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An efficient multiresolution texture classification method is proposed in this paper, based on 
2-D linear prediction, multiresolution decomposition and artificial neural networks. A 
multiresolution spectral analysis of textured images is first developed, which permits 2-D AR 
texture modelling to be performed in multiple resolutions. Recursive estimation algorithms 
combined witth the Itakura distance measure provide sets of AR model parameters representing 
different textures at various resolutions. Appropriate neural network banks are constructed and 
trained being then able to effectively perform classification of textures irrespective of their 
resolution level. Results are presented using real textured images which illustrate the good 
performance of the proposed approach. 

Keywords: Texture classification; 2D linear prediction; multiresolution decomposition; ANNs 

1. INTRODUCTION 

Artificial neural networks have been widely adopted in recent years as a 
powerful tool for providing intelligent solutions in a wide range of problems 
and applications. In the fields of pattern recognition and signallimage 
processing, the nonlinear nature of neural networks, combined with their 
ability to learn from examples, permit the derivation of effective analysis, 
classification and diagnosis approaches, even in noisy or time and space 
varying environments. Various applications, as well as commercial 
products, based on neural networks are being developed, including 
recognition of handwritten characters, analysis of medical images, speech 
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156 A. DELOPOULOS er a1 

and face recognition and classificationjsegmentation of textured images or 
scenes [7, 81. 

Analysis and processing of images include tasks such as classification and 
segmentation, labeling and interpretation, coding and management of the 
images. The design and use of neural network architectures in these 
problems is a subject of on-going research, which involves many other tasks 
such as image and texture modelling for processing or restoration purposes, 
as well as morphological operators for segmentation tasks [ I ,  41. 

The basic problem when using neural networks for analysis of real-life 
images, e.g., aerial or satellite images, is the large size of the images, which 
causes problems of efficiency of training and of the generalization ability of 
the networks. The design of efficient versions of learning algorithms [7,9] 
and of structured and modular networks [lo, 111 is a possible solution for 
such problems. Such a solution is in accorodance with recent theoretical 
results on feed-forward network generalization, which refer to pruning or 
constructive network design, as well as the VC dimension and the 
requirement for small sized networks [2, 171. In addition, however, 
ambiguities regarding the resolution level of the images handled by the 
network may result in erroneous decisions of the classification and/or 
segmentation procedures. 

Classification of images based on their textural content is a task that 
emerges in various applications. Automated digital cartography, military 
supervision, medical imaging and biochemistry are only a few of the areas 
involving such a methodology. Among the most popular approaches in 
textural analysis of image data is the parametric modeling of textures 
accomplished by fitting the coefficients of autoregressive (AR)' or 
autoregressive moving average (ARMA) models to the statistics of the 
image; the image is in this case approximated by a random field produced by 
exciting the aforementioned model by a 2-D whte noise sequence. Texture 
classification is then accomplished through classification of the parameter 
vector containing the estimated coefficients of the linear model. 

Various adaptive schemes have been proposed in the literature in order to 
estimate these coefficients in a computationally attractive way. A variety of 
conventional classification techniques have been adopted as a means for 
separating textures in different categories [14]. 

In the present work we propose a classification/segmentation algorithm 
based on neural networks and linear prediction modelling which is applied 
to scenarios that involve images appearing in multiple resolutions. These 
scenarios include satellite surveillance from varying heights, segmentation of 
medical, biochemical and textile microscopical images at varying magnifica- 
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MULTIRESOLUTION TEXTURE CLASSIFICATION 157 

tion factors, categorization of texture pictures shot from varying azimuth. 
Multiple resolution images are met, for example, in LANDSAT imaginery, 
where new satellites are launched providing images of five times higher 
resolution than the existing ones; images taken from geographical 
information systems are also available at varying resolution levels [18]. 
More specifically, the goal is to exploit information regarding the 
autocorrelation structure and the associated model coefficients acquired in 
multiple resolutions; the multiresolution versions of the images, in analog 
form, are assumed to be related through a wavelet based representation [12], 
which, in digital form, corresponds to 2-D subband analysis. The obtained 
AR feature vectors at muItiple resolutions are processed for classfication 
purposes by appropriate feedforward neural networks that exploit the 
multiresolution information in both the training and testing stages. 

Section I1 of the paper describes the application of multiresolution 
analysis to 2-D images, deriving appropriate relations between autocorrela- 
tion structures of images in successive resolutions. In Section I11 we exploit 
the results of Section I1 in order to compute 2-D AR image models at 
various resolutions. Batch and space recursive estimation algorithms are 
considered. The use of neural networks in view of the obtained results are 
considered in Section IV for the implementation of multiresolutions, 
multiscale classification tasks. Section V contains experimental results 
based on synthetic and real textured images. 

2. MULTIRESOLUTION ANALYSIS OF TEXTURED IMAGES 

Representation of signals at many resolution levels has gained much 
popularity especially with the introduction of the discrete wavelet transform, 
implemented in a straightforward manner by filter banks using appropriate 
low- and high-pass filters [3, 161. In image processing the above are 
equivalent to subband filtering [19]. Multiresolution decomposition results 
in approximation images of low resolution that contain coarser information 
of the image content and in a set of detail images which contain more 
information as resolution is gradually decreasing. 

For an image at resolution level i its corresponding lower 
version is 

N,  Ni 

xi-l (m, n) = h(2m - k ,  2n - I)xi(k, I ) ,  
k=l I=1 

resolution 

(1) D
ow

nl
oa

de
d 

by
 [

A
ri

st
ot

le
 U

ni
ve

rs
ity

 o
f 

T
he

ss
al

on
ik

i]
 a

t 0
0:

54
 0

9 
M

ay
 2

01
3 



158 A. DELOPOULOS et a1 

where ATi is the dimension of the image at level i, h(. , . )  is the blurring 
mechanism that relates adjacent resolution versions and decimation by 2 
indicates down scaling by a factor 2 when moving from one resolution to the 
lower one. Arbitrary (rational) down-scaling factor LIM can be achieved by 
appropriately cascading decimators and imterpolators, 

.b, 'V2 

xi-, (m.  n) = h(Mm - Lk, Mn - Ll )x i (k .  I ) .  (2) 

For the ease of presentation, the subsequent analysis follows the 
paradigm of Eq. (1) rather than that of Eq. (2). 

In the rest of this section we establish a useful relation between the 
autocorrelation of images that appear in different resolutions. This relation 
in next used in order to obtain relations between the coefficients of 2-D AR 
structures fitted to different resolutions of the same textured image. 

Assuming that x,(m,  n) is a 2D random field (texture) with zero mean 
(E(x i (m.  n)) = 0) we denote by 

ri(s,  t )  aE{x i ( rn ,  n)xi(m + S ,  n  + t ) ) ,  - (3) 

the corresponding 2D autocorrelation function. In view of Eqs. (1) and (3) 
ri-,(s, t )  and ri (s ,  t )  are related by 

where 

Equations (4) and (5)  imply that the 2D autocorrelation of the decimated 
signal can by computed by decimating the 2D autocorrelation of the higher 
level using h2(s, t) ,  which is the autocorrelation of h(m,n), as decimating 
filter. 
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MULTIRESOLUTION TEXTURE CLASSIFICATION 159 

Similar relations exist between the autocorrelation functions of rationally 
decimated signals. In [5] such relations are established between cumulants of 
any order for rationally related resolution levels. 

3. MULTIRESOLUTION 2-D AR IMAGE MODELLING 

A common means of characterizing texture images is that of fitting 
Autoregressive (AR) structures that represent the inter-pixel relation of the 
form, 

T xi(m: n) = c xi(m, n) + u(m, n), ( 6 )  

where the pixel value at (m, n) is approximated by a linear combination of 
pixels contained in the vector xi(m,n) corresponding to a neighborhood 
N(m, n) and u(m, n) represents the approximation error ordinarily modeled 
as a white noise process. The associated AR coefficients collected in the 
column vector ci constitute a finite dimension feature vector characterizing 
the statistics of xi(m, n). The choice of the pixels included in N(m, n) varies 
depending on the nature of the images. The non-symmetric half plane 
(NSHP) model was used by the authors in the past yielding satisfactory 
results to a wide variety of natural textured images [I ,  141. 

Given xi (m, n) the optimal estimate Ci of ci is obtained solving the normal 
equations, 

where for each resolution level i both R i a  E{xi(m, n)xi(m, n)T} and r i a  
E{xi (m, n)xi (m, n)) contain appropriate lagsof the autoconelation structure 
Ti (s, t). 

Conversely, multiplying both sides of Eq. (6) by xi (m + s, n + t )  and taking 
expectation yields, 

under the causality assumption, i.e., E{xi(m +s,  n + t )  u(m, n)) = 0. In 
Eq. (8) the ri(s, t) vector contains autocorrelation lags depending on the 
specific neighborhood N(m, n). Eq. (8) indicates that ri(s, t) is itself a self 
driven autoregressive function which is fully characterized by ci apart of a 
scaling ambiguity. D
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160 A. DELOPOULOS et al 

As a consequence of the preceding analysis, a multiresolution feature 
extraction scheme can be implemented according to the following 
algorithmic steps. 

ALGORZTHM I 

STEP 1 Estimate the autocorrelation structure as some high resolution 
level i = 0. 

STEP 2 Solve for co using Eq. (7)  with i=O. 
STEP 3 Compute r-,(s, t )  from ro(s, t )  employing Eq. (4). 
STEP 4 Use r-,(s, t )  to formulate R- , ,  r - ~  and compute S-,using Eq. (7). 
STEP 5 Repeat steps 3 and 4 for i= -2. -3,. . .. 

The algorithm above produces a bank of AR coefficient vector corres- 
ponding to successive resolution levels i  = 0, - 1, -2,. . . while only a single 
autocorrelation estimation procedure is performed at the highest level. 

A slight modification of Algorithm 1 allows the transition between AR 
coefficient vectors corresponding to successive resolution levels. 

ALGORZTHM 2 

Assuming that co is given (for i=O) 

STEP 1 Use Eq. (8) to obtain an approximation of rO(s, t). 
STEP 2 Follow steps 3 to 5 of Algorithm 1. 

Solution of Eq. (7) at any level i can be performed using space recursive 
algorithms exploiting the specific shape of the neighborhood N(m, n). Such a 
recursive implementation for the extended NSHP model is described in [I]. 
The application of such recursive algorithms produces pixel dependent AR 
estimates &(m, n )  of cis thus handling possible nonstationarities of the 
textured images. 

The additional advantage of the aforementioned recursive implementa- 
tion is its ability to produce more than one AR feature vectors for a single 
class of textures rather than a single representative which results from the 
batch solution of Eq. (7). A detailed description of this procedure is 
presented in [8] where the Itakura distance 

cT(m, n)Ri(m, n + l)ci(m, n)  
d = log 

cT(m, n + l )Ri(m, n + l)ci(m, n + 1) ' (9) 

in conjunction to appropriate thresholds is used for texture classification 
and segmentation. The outcome of the procedure used therein is a collection 
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MULTIRESOLUTION TEXTURE CLASSIFICATION 161 

of AR vectors for each class of different textures. The major importance of 
this approach relies on the handling of local nonstationarities in the interior 
of a single texture field. 

4. THE MULTIRESOLUTION NEURAL NETWORK 
CLASSIFICATION BANK 

Artificial Neural Network (ANN) structures have shown good performance 
in texture classification based on pre-extracted AR feature vectors [8, 151. In 
the present work we examine the performance of neural network 
architectures in classifying textured images at multiple resolution levels. 
The vehicle towards this goal is the analysis of Section I11 and in particular 
Algorithms 1 and 2 which are employed both in the training and testing 
phases. 

Training 

The training procedure in multiresolution setup targets the production of a 
bank of ANNs, one for every possible resolution level i, that gather the 
necessary information for classification of AR features computed in any 
level. Let NNi denote the network classifier at level i. If the multiresolution 
procedure proposed in Section I11 was not followed, neural network training 
would require availability of the textures to be classified at all resolution 
levels of interest. An AR coefficient feature extraction procedure (c.f. Eq. 
(7)) in batch or recursive mode would be used next followed by presentation 
of the obtained feature vectors to the networks at each level. The drawback 
of this approach is twofold: 

(1) The prototype textures must be available at (or should be converted to, 
using. Eq. (4)) all levels of interest 

(2) The computationally demanding estimation of Ri, ri, directly from 
xi(m, n), should be done at each level i. 

Both (1) and (2) introduce serious memory and complexity constrains that 
may turn the overall task practically impossible. In the present work we 
propose the use of Algorithm 1 that allows estimation of the AR coefficients 
ci at all levels i based on the autocorrelation estimates computed at the single 
highest resolution level ( i = O ) .  Clearly, the computational complexity of 
steps 3-5 is much lower than the re-estimation of the autocorrlelation 
function directly from the textured image samples at each level. At the same 
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162 A. DELOPOULOS et a/. 

time the memory requirements are substantially reduced. The proposed 
scheme is even more effective since more than one AR feature vectors are 
associated to each class of textures. In this scenario the Itakura distance 
based procedure is employed at the highest level (i= 0) producing multiple 
representatives co. k(k = 1. 2, . . .) for each class k while Algorithms 1 or 2 is 
used for computing the corresponding AR feature vectors cis k for all lower 
resohtion levels i(i= - 1,  -2 ,  . . .). 

The above techniques refer to the pre-processing stage required in the 
construction of feature vector sets appropriate for NN classifiers operating 
at multiple resolutions. It should be emphasized that, if a conventional 
classifier based on pattern matching was employed, the extraction and use of 
a probably large number of AR feature vectors per texture class would 
increase the computational load during the operation (testing) phase. The 
use of neural networks. however, for this task does not inherit this 
drawback, provided that good generalization is achieved since the patterns 
have been embedded in the fixed number of network weights. Moreover, to 
obtain good generalization of the network we propose the following 
procedure for constructing it during training. Let us consider first a two 
texture classification problem and train a network using, e.g., a back- 
propagation variant [9, 131 and a set of reference patterns extracted from the 
textures as described in Section 111. In order to add a new texture class to the 
networks, we follow a constructive approach, inspired by the cascade 
correlation algorithm [6] we first freeze the interconnection weights of the 
already trained network and expand the network architecture by adding a 
new output unit and one or more hidden units. We then train the non-fixed 
part of the network, consisting of the thresholds of all three output units and 
of the weights corresponding to connections due to the added unit(s). Using 
this approach a small number of free parameters is estimated during each 
network training step, generally resulting in small sized networks with good 
generalization abilities. 

Testing 

The NN structure employed for testing consists of a bank of independent 
networks, each operating on a specific resolution level i. In practice, a pre- 
defined depth of levels, say i= 0, -1,. . .,-q is assumed to be of interest. The 
procedure to follow depends on whether the resolution level of the incoming 
pattern is a-priori known or not. 

If it is known, a standard AR parameter estimator is used (c.f. Eq. (7)) in 
order to extract the feature vector ci. The vector is next fed to the i-th neural 
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MULTIRESOLUTION TEXTURE CLASSIFICATION 163 

network (NNi)  that performs classification at resolution level i. In this case 
the use of the preceding muldresolution analysis of Section I11 is limited to 
the training of the networks as described in the previous subsection. 

On the contrary, if the resolution level of the incoming textured image is 
not known, the proposed bank of networks can simultaneously identify the 
correct class of the texture and its resolution. To this end Algorithm 1 or 2 is 
used to produce a series ck ,  ck- , , .  . .,ck-0 of AR coefficients corresponding to 
successive resolutions of the texture to be classified. The subscript k 
represents the unknown resolution of the given texture. At the next step 
hypotheses Hi = (k=  i )  for i= 0,. . .,-(q-p) are iteratively tested using the 
following rule: 

"Hi is true if and only if the decisions of neural networks NAY for all j= i, 
i-1,. . . ,p coincide regarding the classification of the given pattern". 

The procedure terminates upon some io for which lii, is true. In this case 
it is indicated that the resolution level k = io and the correct class of the 
texture is given by the common decision of the employed neural networks. 
In general, the above procedure will provide correct classification of 
textures, irrespectively of their resolution level, assuming that no texture, at 
some resolution k is statistically identical to a different texture at another 
resolution I. 

The operation diagram of Figure 1 illustrates the simultaneous classifica- 
tion and resolution identification procedures included in the proposed 
multiresolution neural network bank. The instance shown in this figure 
corresponds to the i-th iteration where the hypothesis Hi: k=i is tested. A 
sequential operation is assumed, where the currently examined feature 
vector ck and the computed vectors C J + ~ ,  j= 1,. . . , p  are sequentially 
presented at the input of a subset of p + 1 corresponding neural networks 
in the bank. This operation can be viewed as following a sliding window 
procedure which sequentially uses a subset of the network classifiers at 
resolutions i, i - I ,  . . . i-p for i = 0,- 1, . . ., -(q-p) .  To avoid the sequential, 
in the form of sliding window, operation, and favor parallel implementa- 
tion, one may consider keeping p copies of each network and perform the 
above operation in parallel. 

Despite the fact that a possibly large bank of neural networks may be 
required for this task, by taking advantage of the massive parallelism of the 
networks [lo, 111, a parallel implementation of the bank is feasible in high 
performance parallel computing environments both in training and in 
testing. D
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A. DELOPOULOS et a1 

FIGURE 1 Operation diagram of the neural network bank for simultaneous classification 
and resolution identification of feature vector ck (i-th iteration). 

5. SIMULATION RESULTS 

Test Case #1 

In the first experiment we used three different textures, p. 1.1.1, wall and 
sand, taken from the Brodatz album with sizes 512x512, 256x256 and 
256x256 respectively. Parts of these images of size lOOx 100 pixels were used 
to extract characteristic NSHP model coefficient vectors at, what was 
considered as, high resolution level. Seven (7) characteristic vectors were 
extracted from the first picture, eight (8) from the second and five (5) from 
the third one. We used the extracted 6 vectors to train the two hidden layer 
network classifier and then tested its performance over the other parts of the 
images. The good network performance is indicated from the results shown 
in Table I. 
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MULTIRESOLUTION TEXTURE CLASSIFICATION 

TABLE I Test Case #1: Classification of real life 
textured images at different (known) resultion levels 

Image Success Raze (%) 
Resolulion (0) Resolution (- 1) 

p.1.1.1. 95.0% 93.6% 
wall 93.4% 90.8% 
sand 94.7% 91.1% 

We then used the analysis (decimating) separable filter h(m, n) = 
h, (m)h, (n)  with 

in order to generate, via Eq. (I), lower resolution versions of the three 
textures. 

We employed next Algorithm 1 to produce the corresponding low 
resolution NSHP model coefficient sets L1 and generate a two-resolution 
reference data base. After training a similar network classifier using the 
model coefficient vectors from the images at low resolution level, we tested 
its generalization performance, which was also very good as shown in Table 
I; the above verifies that, assuming the resolution level a-priori known, the 
recursive classification scheme performs well at both resolution levels. 

Test Case #2 

In the second experiment we examined the proposed classification scheme 
when the resolution of the image to be classified is not a-priori known. We 
used textures p.l.l.1, p.1.1.3 and p.1.1.7 which are all of dimensions 
51 2 x 512 pixels. Through the proposed procedure we extracted character- 
istic vectors at the higher resolution level and used them to derive 
corresponding vectors at two lower resolutions (images sizes of 512x512, 
256x256 and 128x 128 pixels respectively); Figures 2a and 2b show texture 
p. 1. I. 1, at resolutions i= -1 and i = -2 respectively considered in the 
experiment. As a consequence, we generated a three-resolution NSHP 
model reference vector data bank, including 8 vectors per resolution for the 
first image, 7 for the second and 9 for the third one; in total the data base 
consisted of 72 data vectors. Using this database we trained three separate D
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A. DELOPOULOS er ai. 

FIGURE 2 Multiresolution versions of texture p.l.l.1 of the Brodatz album 

networks, following the procedure described in Section IV, each of which 
had i) 6 nodes in its input layer, corresponding to the AR model coefficients 
ii) two hidden layers composed of 5 and 4 nodes respectively, iii) an output 
layer with three nodes corresponding to the three texture categories; each 
network classified the images at a single resolution level. After training, we 
presented the recursively estimated NSHP coefficient vectors from the 
images to the corresponding resolution network input and obtained the 
classification ratios shown in Table 11. 

We then presented all the above vectors to the networks without any 
information about their resolution level and tested the procedure proposed 
earlier in section IV of the paper. The classification ratios obtained for each 
texture class are also shown in Table 11; these ratios are approximately equal 
to the ratios obtained at the lower resolution level per class, indicating that 
the proposed procedure is very effective for classifying textures without a- 
priori knowledge about their resolution level. 
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MULTIRESOLUTION TEXTURE CLASSIFICATION 167 

TABLE I1 Test Case #2: Classification of real life textured images at different (known and 
unknown) resolution levels 

Image Success Rate(%) 
known resoltuion level unknown resolution level 

Resolution (0) Resolution ( - 1 )  Resolution ( - 2 )  

p l l  95.2% 93.7% 91.3% 90.9% 
p.1.1.3 93.6% 91.9% 90.4% 90.1% 
0.1.1.7 92.4% 90.8% 89.6% 89.3% 

6. CONCLUSIONS 

Multiresolution analysis of 2-D autoregressive image models has been 
combined with artificial neural networks for effective classification of 
textures. A scheme has been proposed which permits texture calssification to 
be performed irrespective of the resolution level of the presented image, 
based on the efficient generation of a multiresoiution bank of artificial 
neural networks trained by appropriately extracted model parameter 
vectors. The presented results are quite promising. We are now examining 
the application of the approach to combined classification and segmentation 
problems, for image analysis and coding at low bit rates. 
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