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Abstract
The implementation of an efficient scheme for translation, rotation and scale invariant

optical character recognition is presented in this paper. An image representation is used,
which is based on appropriate clustering and transformation of the image triple-correlation
domain. This representation is one-to-one related to the class of all shifted-rotated-scaled
versions of the original image, as well as robust to a wide variety of additive noises. Special
attention is given to binary images, which are used for Optical Character Recognition, and
simulation results illustrate the performance of the proposed implementation.

1. Introduction

Most practical Optical Character Recognition systems involve many different tasks
which require either integrated treatment of entire documents, or treatment of isolated words
or characters. A complete text reading system includes the following major tasks: analysis of
the document into its constituents, such as photographs, graphics and text; segmentation of
the text into columns, paragraphs, lines, words and characters; recognition of the segmented
characters; ambiguity resolution which might involve returning back to previous stages of the
segmentation / recognition procedure. Other tasks also include preprocessing of the input
image (gray scale normalization, noise elimination), postprocessing of the derived text
(spelling verification or correction, sometimes incorporating customized lexicons), as well as
the unavoidable interaction with human operators.

The character recognition task is divided into two phases: In the first, feature extraction,
all unnecessary or undesired attributes are filtered out and the image in each segment is
described as a vector of fixed length, containing all the "essential" characteristics of the char-
acter. The second phase is classification. A classifier, which learns to discriminate classes by
generalizing from a training set, outputs the character label it believes is represented by the
feature vector, or, if it is unsure, it outputs a set of choices and associated confidences. In this
paper we deal only with the image recognition task and more specifically with feature extrac-
tion. In particular, an image transformation computed in terms of the third-order correlation
of the pattern is used, and the obtained representation constitutes a feature vector which is
insensitive to translation, rotation and scale transformations of the original image. We also
achieve insensitivity to noise and to small shape distortions when moving from the pattern
space to the feature space.

The transformation that projects the image space to our feature space is introduced in
Section 2. Section 3 deals with practical considerations regarding the obtained representation,
such as discretizations and computational complexity reduction. An optimized algorithm for
the special case of binary images is also presented. Finally, Section 4 includes simulation
results, illustrating the aforementioned properties of our representation and the performance
of the algorithm with real input images.



2. The Invariant Representation

The representation of 2-D images that we used is described in this Section, having the
following properties: [P1] shift-rotation-scale invariance (SRS), [P2] unique correspondence
between the class of original images that are mutually related with rotation- translation-
scaling transformation and the new representation domain, and [P3] noise insensitivity.

This representation is expressed in terms of the third-order correlation of the input
image, which possesses some very important properties, especially regarding noise suppres-
sion [ 1 ]. The use of triple correlation for SRS invariant recognition is also proposed in [ 2 ],
[ 3 ] and [ 4 ], while the use of third-order neural networks has also been examined in [ 3 ] and
[ 4 ]. What we novelly propose here is a new efficient scheme for reducing the high computa-
tional complexity involved in extracting the desired features of the image. Besides efficient
implementation of the recognition procedure using, for example, an artificial neural network,
this method also allows real-time processing in the special case of binary (black & white)
images which are most often used in OCR systems.

Definition and properties of 3rd order correlations : Let x(t) be a real 2-D signal with
support S = [0 . . . N − 1] × [0 . . . N − 1] . Its triple-correlation is defined as,

x3(τ1, τ2) ∆=
1

N2
S
Σ x(t) x(t + τ1) x(t + τ2) , (1)

The triple correlation of a 2-D signal x(t) is a function of two 2-D vector indices, τ1, τ2 ,
each of them spanning the set S′ = [(−N + 1) . . . (N − 1)] × [(−N + 1) . . . (N − 1)] . The triple
correlation has the following symmetries :

x3(τ1, τ2) = x3(τ2, τ1) = x3(τ1 − τ2, − τ2) = x3(τ2 − τ1, − τ1) (2)

It is also well known [ 1 ] that triple correlation is insensitive to additive Gaussian or any other
linear and symmetrically distributed noise, and that there is one-to-one correspondence with
the original signal. This property implies that we can safely compare two signals by only
comparing their triple correlations. Let us now consider the image y(t) = x(Tα,θ t + t0) , where
Tα,θ is a scaling and rotation matrix and t0 a shifting vector; it can be easily checked out
that, ignoring boundary points of S ,

y3(τ1, τ2) = x3(Tα,θ τ1, Tα,θ τ2) , (3)

i.e., when the signal plane shifts, the triple correlation is unaffected and when the signal plane
rotates and/or is rescaled by T , the same happens in the triple correlation domain for both lag
indices τ1, τ2 .

The proposed representation : By definition, x3(τ1, τ2) is the accumulation of all triple
products formed by the values of x(t) that lie on the corners of those equal triangles that are
shifts of a prototype triangle defined by arbitrary vectors τ1, τ2 . Hereafter we shall call
W(τ1, τ2) the set of all these triangles. Define, next, the set K(τ1, τ2) of all triangles that are
similar to the members of W(τ1, τ2) . For any set K(τ1, τ2) , we define a corresponding class
C(τ1, τ2) as the set of all triple-correlation lags whose indices form, on the R2 plane, trian-
gles similar to the triangle defined by the vectors τ1, τ2 . Note that if we let τ1, τ2 span the
entire S′ , identical classes will be generated for different indices (τ1, τ2), (τ1′, τ2′), if these
indices form similar triangles. This redundancy can be removed [ 3 ] by fixing τ1 to a con-
stant vector and varying τ2 in a subset of S′ .

It can be verified [ 3 ] that any rotation θ and/or scaling α of the original 2-D plane,
x(t) , results in an internal rearrangement of the elements of C(τ1, τ2) without any inter-class
interference, since it translates the specific W(τ1, τ2) subset to another subset in K(τ1, τ2) .

We next define the following arrangement between the members of each class:

x̃3(ρ, φ; τ1, τ2) ∆= x3(Tβ,φ τ1, Tβ,φ τ2) , (4)



where, Tβ,φ is defined similarly to Tα,θ and ρ = log β . Variables ρ and φ are introduced to
represent any scaled (in log form) and rotated triangle W(Tβ,φ τ1, Tβ,φ τ2) when compared to a
prototype triangle of class C(τ1, τ2) .

For the image y(t) = x(Tα,θ t + t0) it is easy to derive that

ỹ3(ρ, φ; τ1, τ2) = x̃3(ρ + log α, φ + θ; τ1, τ2) . (5)

Conversely, if Eq. (5) holds for all classes C(τ1, τ2) with the same values of α and θ , then,
y(t) can be generated from x(t) by rotation ( θ ), rescaling ( α ) and any arbitrary translation.
The above establishes the equivalence of the rotation and/or scaling of the original 2-D sig-
nal with a 2-D shift in the x̃3(ρ, φ; τ1, τ2) domain with respect to ρ and φ.

Based on this conclusion, any transformation of the classes C(τ1, τ2) that is shift invari-
ant with respect to ρ, φ will provide a shift-rotation-scale invariant representation. It is well
known that the 2-D Fourier transform X̃3(P, Φ; τ1, τ2) of the field x̃3(ρ, φ; τ1, τ2) with respect
to the "space" variables ρ and φ is such a transform. In [ 3 ] it is shown that using the ampli-
tude and phase information of this transform, a new representation Fx is obtained which has
a unique correspondence with the class of original images that are mutually related with rota-
tion-translation-scaling transformation. On the other hand, Fx is expressed in terms of the
third-order correlation of x(t) . Thus, for a large image size N , the representation becomes
insensitive to any type of additive noise having zero third order correlations. Properties [P1] -
[P3] are therefore satisfied.

It should be emphasized that Fx is a stand-alone representation which can be used as a
direct input to a neural network based or any other conventional classifier [ 4 ]; this is in con-
trast to other representations that require a matching procedure of the pattern to be classified
with all available prototypes.

3. Feature Size Reduction - Discrete Implementation

A reduction in the size of the invariant representation is achieved, abolishing uniqueness
in favor of computational efficiency. A reduced representation results if only the amplitude
information of the Fourier transform of each triple-correlation class is kept dropping the
phase information. A further reduction can be derived, by using only the zero-frequency
Fourier coefficient of each class as a sufficient feature for classification. In our case, after
careful consideration of simulation results, we concluded that the former choice provides an
alternative which, without being very demanding in terms of the calculations involved and the
amount of memory required, preserves sufficient information so as not to ruin the uniqueness
of the representation.

A reduction of the model redundancy can also be obtained as stated above and explained
in [ 3 ]. In that case, we can parametrize the initial triangles W(τ1, τ2) using one of the follow-
ing schemes:

(A) (τ1, τ2) = (τ0, [k, l]), k ∈ [0, 1] , l ∈ [0, ∞)

(B) (τ1, τ2) = (τ0, τ2) → (θ1, θ2) θ1, θ2 ∈ [0,
π
2

]

(C) (τ1, τ2) = (τ0, τ2) → (θ1, λ) θ1 ∈ [0,
π
2

] , λ∈ [0, ∞)

where τ0 = (1, 0) , θ1 , θ2 are the angles included between the plane vectors (τ1, τ2) and
(τ2, τ2 − τ1) respectively, and λ is the ratio of the length of vector τ1 to the length of vector τ2.
In all of the above cases, the four dimensional space spanned by (τ1, τ2) is reduced, without
any loss of information, to a 2-D space.

In order to reduce the computational burden in real life applications, where the original
2-D signal x(t) is always available in discrete form, it is preferable to obtain x3(τ1, τ2) as the



inverse FFT of the bispectrum X3(u, v) , (the Fourier transform of x3(τ1, τ2) ). This is so,
because

X3(u, v) = X(u) X(v) X*(u + v) (6)

where X(u) is the 2-D Fourier transform of x(t) . As a consequence, X3(u, v) can be com-
puted as the triple product of a 2-D FFT using fast software or hardware implementations. If
the size of the initial input image is N × N , this method can reduce the complexity of the
algorithm from O(N6) (when x3(τ1, τ2) is computed via the definition) to O(N4 log2 N) .
Unfortunately, the price paid for this remarkable improvement is the enormous amount of
memory required to store the entire 4-D representation of x3(τ1, τ2) .

For this reason, an alternative scheme was used, which exploits the fact that binary
images are actually matrices whose elements are either 0 or 1. In this case, successive rows of
each matrix can be stored in binary integers. In addition, multiplication is then equivalent to
logical AND and as a result, N multiplications can be executed in a single machine cycle,
given that the wordsize of the machine used is always greater than or equal to the input image
size N . Thus, the resulting complexity is now reduced to O(N5) . This scheme requires no
extra memory, as the elements of the triple correlation are calculated exactly when they are
needed.

The next step is to to specify a discrete 2-D grid of (k, l) in (A), (θ1, θ2) in (B) or
(θ1, λ) in (C) that will determine the number of distinct classes C(τ1, τ2) . The quantization
should be rather coarse defining the effectively distinct classes. Clearly, the above quantiza-
tions result in a possible loss of information. However, they provide the invariant representa-
tion with robustness to small distortions of the original 2-D signal due to the implicit averag-
ing they introduce.

Finally, a further discretization should be applied in the interior of each class. The field
x̃3(ρ, φ; τ1, τ2) should be computed on a discrete grid of the parameters ρ and φ. The sam-
pling rate in this domain is conceptually related to the number of triple-correlation lags that
are assigned to each class.

At this point it should be noted that x̃3(ρ, φ; τ1, τ2) is not calculated the way Eq. (4)
implies: instead of calculating x3(Tβ,φ τ1, Tβ,φ τ2) for each ρ, φ, we first calculate x3(τ1, τ2)
and then decide to which ρ, φ the calculated value corresponds. We also decide to which
class this value belongs, depending on the class parametrization we have chosen, and we add
it to the appropriate element of x̃3 . In addition, for each τ1 ∈ S′, τ2 needs not span the entire
S′ ; in fact it is restricted to the region

S′′ (τ1) = { τ2 ∈ S′: 0 ≤ τ1. τ2 ≤ | τ1 |2, 0 ≤ τ1. τ2′, (τ1 − τ2) ∈ S′ } (7)

where τ2′ is derived from τ2 by a 90 degrees clockwise rotation. The first two restrictions
that are imposed on τ2 are due to symmetries of triple correlation, while the last one simply
follows from the fact that x3(τ1, τ2) = 0 for (τ1 − τ2) ∉ S′ . Restricting τ2 to a relatively small
area greatly simplifies the calculation procedure.

Having available x̃3(ρ, φ; τ1, τ2) for each class C(τ1, τ2) , in the form of a 2-D matrix, an
FFT algorithm can be used to compute X̃3(P, Φ; τ1, τ2) . Since there is no interrelation
between different classes, a parallel implementation of computations is possible.

Two more improvements can be made to speed up computations: First, all the horizontal
shifts of the input image are calculated and stored for later use. Second, all possible products
of the form x(t) x(t + τ1) are calculated before entering the loop that corresponds to τ2 . The
optimized algorithm, in the case of the (θ1, θ2) class parametrization, is as follows:
Step 1: Calculate all the horizontal shifts of the input image.
Step 2: For each τ1 ∈ S′ :

1) Find and store all possible products x(t) x(t + τ1) , using the already calculated horizontal
shifts and the logical operator AND.



2) Calculate and quantize ρ, φ by comparing τ1 with τ0 = (1, 0) .
3) For each τ2 ∈ S′′ (τ1) :

3a) Find x3(τ1, τ2) , using the products x(t) x(t + τ1) .
3b) If x3(τ1, τ2) = 0 , proceed to the next value of τ2 .
3c) Calculate and quantize the included angles θ1, θ2 .
3d) x̃3(ρ, φ; θ1, θ2) : = x̃3(ρ, φ; θ1, θ2) + x3(τ1, τ2)

Step 3: Find X̃3(P, Φ; θ1, θ2) as a 2-D FFT transform of x̃3(ρ, φ; θ1, θ2) ; keep the amplitude
of the transform only.

4. Simulation Results

The performance of the proposed efficient scheme for invariant optical character recog-
nition was tested on real images obtained by an optical laser scanner. Figure 1 depicts some
of the images that were used, namely the uppercase and lowercase characters ’N’, ’T’, ’U’
and ’A’ in three sizes (pointsize 9, 10 and 11) and two directions. Figure 2 shows parts of the
invariant representations of some of the images shown in Figure 1, namely the horizontal cap-
ital letters ’N’, ’T’, ’U’, ’A’ of pointsize 10, in the (θ1, θ2) domain. The average size of these
letters was approximately 20x20, while (θ1, θ2) were quantized to a discrete grid of size
(16x16) and (ρ, φ) to another of size (8x8), resulting in a 4-D representation of total size
(128x128). However similar these representations might seem, they are quite different from
each other, as the two Tables below show. On the contrary, the representations of three scaled
and rotated versions of the capital letter ’N’, which are depicted in Figure 3, are almost identi-
cal, demonstrating invariance as well as robustness to small shape distortions. In Table I, the
difference between the representations of a set of letters is estimated by using Euclidean dis-
tances (sums of squares), while in Table II similar distances are shown between two sets of
letters which are related to each other with rotation and scaling. As it can be clearly seen, our
representation remains quite unchanged despite the transformations of the input images. Note,
however, that the classifier would be very easily fooled in the case of the lowercase letters ’n’
and ’u’. Similar difficulties were encountered with other pairs of letters such as ’b’, ’q’ and
’d’, ’p’, which are mutually related to each other with a rotation of 180 degrees, but can be
easily overcome using other techniques.

5. Conclusions

A new efficient scheme for invariant optical character recognition was introduced in this
paper, which allows real-time processing of binary images. Invariance of classification with
respect to input image transformations and robustness to additive noise and distortions were
achieved while the performance of the derived algorithm was tested on real image data.
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