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Abstract . Space-time tubes, a feature that can be used for analysis of 
motion based on the observed moving points in a scene is introduced. 
Information provided by sensors is \ised to detect moving points and 
based on their connectivity, tubes enable a structured approach towards 
identifying moving objects and high level events. It is shown that using 
tubes in conjunction with domain knowledge can overcome errors caused 
by the inaccuracy or inadequacy of the original motion information. The 
detected high level events can then be mapped to small natural language 
descriptions of object motion in the scene. 

1 Introduction 

While video motion analysis is a broad subject that has been extensively stud­
ied, most of the established approaches appear to be insuflScient when it comes 
to semantic analysis of video data. They either provide low level information 
that is primarily useful for coding purposes, or are highly dependent on image 
processing results that lack the accuracy required for identification of natural 
objects or events. Mobile object detection and tracking techniques have demon­
strated satisfactory results (e.g., [5]), but often heavily rely on the robustness 
and effectiveness of the image processing algorithms applied; the use of common 
sense rules and domain knowledge is usually limited and impHcit, integrated in 
the tracking algorithm. 

In this paper we introduce space-time tubes as a general concept and discuss 
the ways they can be used to identify high level events related to natural object 
motion. One of the most important benefits is that low level processing is aban­
doned early in the event detection process, while results are mainly obtained 
using reasoning that can accomodate domain knowledge. 

Since tubes have certain properties that can be directly mapped to events 
such as "Two objects meet", it is also possible to construct simple nattiral 
langugage descriptions of the events detected in a scene (see section 3). 

2 Space-Time Tubes 

Assume that sensors detect motion in a scene, so that a binajry motion mask 
Ib{xj y, t) is provided: 
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(x,j/,*) = | j I ^ , . I X if motion is detected at point (x, y) at time t .^. 
h{x,y,t) = {^ . (1) 

' " otherwise 

Note that moving points given by h correspond to the projection of moving 
objects on the sensor plane. When using a camera for example, the detected 
points result from processing frames that correspond to perspective projection 
at the camera projection plane and using the foreground extraction technique 
presented in [2] at a specific time (frame) is given in Figure 1(b). 

(a) (b) 

Fig. 1. A video scene and the corresponding binaxy mask for the moving points. The 
original image comes from the EC funded CAVIAR project [1]. 

The subset 5 C R^ of the moving points forms a topological space such that 
the function I^ defined above is the characteristic function of S, Moreover, every 
cross-section ^(^o) C R^ of 5 at time to also defines a topological space, and 
the corresponding characteristic function is Ib{x,y,to), An example is given in 
Figure 2, as obtained from a video sequence. 

Any subset T of S that is connected and its cross-section T PI S{to) at to 
is also connected for any to is called a tube. A single connected component of 
S is called a composite tube, in the sense that it is formed by union of tubes. 
Note that for composite tubes and tubes, connectivity refers to x — y — t space, 
while for their intersections at a specific time t, it refers to the x — y space. 
Moreover, the above definitions allow tubes to have common elements. There 
are four main events that can be observed on tubes forming a composite tube: 

1. Start, A tube starts at time to if for every point (a;, y,t) 6 T, t > to. If tubes 
are maximal sets, i.e., they are the maximal sets that axe connected and 
their cross-section T H S{to) forms a connected component in S{to), then 
their start points are the start points of the corresponding composite tube. 

2. Stop, A tube stops at time to if for every point {x, y,t) eT,t <to. As with 
start points, if tubes are maximal sets, then their stop points are the stop 
points of the corresponding composite tube. 

3. Merge, Two tubes Ti and T2 merge at point to if their cross sections TinS(t) 
and T2 n S{t) are not connected for t <to and are connected at to. 
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Fig. 2. The points detected in thex-y-t space, as obtained by applying a foreground 
detection algorithm on a video sequence. 

4. Split Similar to merge, two tubes Ti and T2 split at point to if tlieir cross 
sections Tif\S{t) and T2f\S{t) axe connected for Kto and are not connected 
at to. 

Merge and split points of tubes that are maximal sets are also merge and split 
points of the corresponding composite tube. 

Tube segments are tubes that form a partition of a composite tube such 
that each one of them starts at a start, merge or just after a split event and 
stops at a stop, split or just before a merge event. Moreover, their cross section 
Ts n S{t) at any time t forms a connected component of S{t) (hence two tube 
segments can only be coimected at their start or stop points). Given a composite 
tube, a number of possible tubes can be constructed. If we allow tubes to start 
or stop at any point (i.e., not restrict tubes to start or stop whenever a tube 
event occurs), there are infinite possibilities. However only one partition of tube 
segments can be constructed. 

All of the above can be better explained using Figure 3, that shows sketches 
of what a projection of a composite tube on the x — t plane might look like. 

The above definitions depend on the topological properties of a given set 
of points S^ however tubes also have certain geometric properties that are of 
interest, namely tube centroidj area^ velocity and duration. For a tube T these 
four properties are functions of time. 

The centroid can provide an approximation of the trajectory that the tube 
followed and for each time t equals the centroid of the set S{t) fl T of points. 
A similar property would be the tube skeleton that can be extracted via the 
use of a skeletonization algorithm, however this tends to be a computationally 
intensive process, compared to centroid calculation. A tube's area at time t is 
simply the area the tube occupies at that time. As far as velocity is concerned, 
both X and y axis velocity components Vx and % are the same for all points 
of a tube for a specific time t and are given by the tube's gradients Vxit) = ^ 



586 Artificial Intelligence Applications and Innovations 

(a) (b) (c) 

Fig. 3. (a) Sketch of composite tube, marking the events that occur, (b) Sketch of 
two possible tubes for the original composite tube, (c) Sketch of the corresponding 
tube segments. 

and Vy(t) = ^ for a specific point {x,y) (e.g., the centroid). Finally, a tube's 
duration is given by the difference d = t/ — to of the stop and start times of the 
tube. 

All the definitions above can easily be extended in the discrete case, if the 
sensor signal obtained is digital. 

3 Mapping Natural Objects to Tubes 

Tubes, or certain tube properties can be used to describe motion of natural 
objects in the observed scene i.e., find their trajectories and velocities and even 
lead to verbal descriptions of natural events such as "An object A entered the 
scene and moves fast" or "objects A and B meet". 

Consider the ideal case, with sensor information provided being completely 
acctirate and the binary mask I^ free of errors. Then, we can make the assump­
tion that each moving natural object generates exactly one tube. A composite 
tube is generated when more than one objects move and their projections at the 
sensor plane meet at least once. Hence, given a composite tube that has a single 
tube segment (no merge or split) we can unambiguously determine the motion 
of the corresponding moving object. This is not the case in general, however: In 
Figure 3(a) there are multiple tubes that can form the imtial composite tube 
and one example is given in Figure 3(b). If no restrictions are posed on the 
start/stop points and the area a tube can occupy, there is an infinity of possible 
natural events that would produce the same composite tube. 

In most cases of practical inter^t a tube starts at an event of the corre­
sponding composite tube i.e., a start, merge or split and stops at a stop, merge 
or split. We can therefore find a finite number of possible tubes for a given 
composite tube, a problem similar to finding all the connected subgraphs of 
a graph where each node will correspond to a tube event and each liok to a 
tube segment. Additionally, subgraphs that are mapped to temporally concur­
rent tube segments are rejected e.g., TSi and T52 of Figure 3(c) cannot form 
a single tube (the corresponding natural object would be at two places at the 
same time). 
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Hence, for a given error-free composite tube this approach leads to a num­
ber of possible events. Tube features such as area or velocity may be used to 
determine the event that is most likely to have happened, but in general more 
features such as color or texture will need to be obtained in order to rank these 
events while the result will also depend on the application domain. This ap­
proach has the following advantages: (i) Tubes are used as a feature that can 
be employed by definitions of natural events in a knowledge base [3], (ii) The 
possible events that are examined are restricted in number and identified, (iii) 
Processing with other features is optional but can greatly increase the accuracy 
of the inference process and enable balancing between complexity and vajidity 
of the results as developed in [3, 4] (iv) If other feature extraction algorithms 
axe applied, tubes can provide the region of Interest. 

By assigning verbs to events (e.g., "meet" for merge, "part" for split), and 
designating each natural object with an alphanumeric label, it is possible to 
map the detected natural events to natural language descriptions as described 
in [6]. If objects are known or identified then their labels are replaced by their 
name or property. 

4 Ambiguities due to Errors 

In real-life applications sensor information wiU often be inaccurate and will lead 
to errors, due to imperfections of the devices and algorithms used. Additionally, 
there exist certain errors that are introduced when dealing with two-dimensional 
signals that describe three-dimensional scenes (e.g., occlusion). Certainly, the 
assmnption that each moving object generates exactly one tube is not valid in 
that case and a tube preprocessing stage must be introduced before proceeding 
to examination of natural events. 

There are three main errors that can be observed in tubes with respect to 
natural objects: 

1. Temporal discontinuity, A single natural object may generate more than 
one tubes due to occlusion or other factors. An example is given in Figure 
4(b), where two tubes are generated and correspond to a single tube given 
in Figure 4(a). 

2. Spatial discontinuity, A single natural object generates two or more concxn:-
rent tubes, because parts of the object were detected as different moving 
objects. An example of the combination of this and the previous error is 
given in Figure 4(c). 

3. Noise. A tube is generated where no moving object exists. This is common 
in algorithms that determine the motion mask of a video sequence, where 
sudden changes in the lighting conditions lead to detection of regions that 
do not correspond to moving objects in the original scene. 

A tube preprocessing stage can be introduced to compensate for these errors 
based on how objects are expected to behave in the given application domain. 
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(a) (b) (c) 

Fig. 4, Tube errors, (a) Correct tube, (b) Temporal discontinuity (c) Spatial and 
temporal discontinuity. 

Generally, each composite tube or set of neighboring composite tubes is trans­
formed into composite tubes that have "lower resolutions". A weight is assigned 
to each of them, designating the degree up to which they approximate the ideal 
scenario of section 3. Its value is determined using a set of metrics on tubes e.g., 
the distance or displacement vector between a stop and a consequtive start event 
(so as to identify temporal discontinuities) and a correpsonding fuzzy member­
ship function [7]. For example, the tubes of Figure 4(c) can be transformed into 
the tubes of Figures 4(b) and 4(a). 

For each transformed composite tube, there exists a different set of natural 
events, as in section 3. Based on the weight of each transformed composite tube 
a certainty value is assigned to each of the natural events, denoting our degree 
of behef that this event is what actually happened. Additional features can 
then be used to increase or reduce this certainty value and rank the possible 
outcomes. 
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Fig. 5. The stages of identifying and assigning verbal descriptions to natural events 
using tubes. 

Figure 5 presents a simplified block diagram that summarizes the use of 
tubes in extracting verbal descriptions based on motion in a scene. Note that 
there are two main sources of ambiguity in this process: (i) Image processing 
errors that are dealt with in the preprocessing stage and (ii) the one-to-many 
mapping of a composite tube to natural events. In the latter case the inference 
engine uses domain information as well as additional features to reason about 
the event that is most likely to have occurred. 
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5 Experiments 

In order to evaluate the use of tubes in motion analysis and detection of nat­
ural events, a number of experiments were conducted using video sequences 
obtained from a static camera, mainly based on the datasets provided by [1]. 
The foreground mask is extracted using two techniques, the first one [8] is fast 
but rather error prone when there are sudden changes in the Hghting condi­
tions while the second [2] is more accurate but computationally intensive. In 
both cases filtering and morphological operations served as an initial processing 
stage. 

A simple set of rules was used to transform and remove errors from the 
extracted composite tubes. These rules were based on the tube segments' durar 
tion and area as well as the distance between successive stop and start events. 
Tube segments with small duration or very small area were removed or merged 
with other tube segments depending on whether they formed a composite tube 
on their own. If such a tube segment was also a composite tube it was con­
sidered noise and was removed, otherwise it was merged with a tube segment 
with longer duration or larger area to avoid spatial discontinuities. Further­
more, composite tubes that were very close to each other were united to avoid 
temporal discontinuities. 

Figure 6 shows an example taken from a 300-frame video sequence. Note 
that using rules to transform the original tubes removes the errors caused by 
inaccurate information obtained through image processing operations. In most 
experiments, the results from both foreground extraction algorithms were sim­
ilar, even though the foreground mask provided by [2] was far more accurate. 

6 Conclusions 

Space-time tubes, a novel feature that can be used to analyze motion infor­
mation, was presented and the stages required to obtain semantic-level natural 
language descriptions regarding events in the observed scene were outlined. Ex­
periments that were carried out demonstrated how the use of tubes and tube 
processing can overcome image processing errors that would otherwise lead to 
false conclusions in event detection within video sequences. The main benefits 
of using tubes lie on the fact that information about natural events is obtained 
through knowledge based reasoning and rules, not based on raw sensor infor­
mation or low level processing results that tend to be inaccurate. Furthermore, 
tubes can be used in conjunction with other features independently, thus allow­
ing for smooth integration to a general reasoning framework. 
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