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Summary. This chapter deals with the various problems and decisions associated
with the design of a content based image retrieval system. Image descriptors and
descriptor similarity measures, indexing data structures and navigation approaches
are examined through the evaluation of a set representative methods. Insight is pro-
vided regarding their efficiency and applicability. Furthermore the accuracy of using
low dimensional FastMap point configurations for indexing is extensively evaluated
through a set of experiments. While it is out of the scope of this chapter to offer a
review of state of the art techniques in the problems above, the results presented aim
at assisting in the design and development of practical, usable and possibly large
scale image databases.

1 Introduction

The main goal of content based image retrieval research is to devise suitable
representations of images in order to allow query and retrieval based on the
visual properties of images instead of manually inserted user annotations.
Often the queries themselves are images and the user expects similar images
to be retrieved.

Significant research has been performed on image retrieval systems in the
past few years and the promising results contributed to the development of
the MPEG-7 standard [1, 2]. The ultimate goal of automatic semantic char-
acterization of images based on their visual content remains largely unsolved
(even though there are partially successful approaches under controlled envi-
ronments e.g., [3–5]). Still, descriptions of images based on color, textures,
shapes etc. provide adequate results for a user to begin a search.

Practical, real world image retrieval applications, however, have additional
requirements. Queries must be answered fast, while at the same time the
design and implementation must be scalable, allowing searches within large
image datasets. This requirement implies that an efficient indexing mechanism
must be employed for storing image descriptions in the database. Several data
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structures have been proposed to this end in the literature. Examples include
a family of methods based on kd-trees [6, 7], hashing (e.g., [8]), P-Sphere
trees [9] and others. While these approaches offer an improvement over the
exhaustive search for results, they are less efficient than the corresponding
indexing structures used for text. Furthermore, they cannot always be used
in conjunction with high dimensional image descriptors. In fact, this is one
of the major limiting factors preventing the creation of content based image
databases at large scales (and ultimately, the Internet).

One may summarize the most important design issues that have to be
resolved during the development of a content based image database system
into the following:

1. The description of images.
2. The similarity measure for the selected description. Several image descrip-

tors can be compared with more than one measure. One must choose the
measure that provides the best retrieval results for the application at hand.

3. The indexing mechanism to be employed.
4. The proper number of dimensions for the target descriptors for practical

retrieval times.
5. If needed, a method that will provide low dimensional feature vectors,

given the original image descriptors.
6. The visualization and browsing interface.

This chapter discusses the above issues by providing evaluations of known
methods, thus providing an overview of the design of an image retrieval sys-
tem. For the description of images in Sect. 2, only global color descriptors are
considered, the histogram and dominant color. For the dominant color a com-
parison between two distance metrics is performed that provides indications
concerning the choice of a similarity measure.

The kd-tree is considered regarding the indexing of image descriptors in
Sect. 3. It is illustrated that data structures of this kind are not efficient when
the number of dimensions used by the image descriptors exceed a certain limit.
Additionally, such indexing structures index points in a k-dimensional space
but the dominant color descriptor does not define points in such a space.

Section 4 presents a solution to these problems, based on point configu-
rations provided by methods such as Multidimensional Scaling and FastMap.
Thus one can can derive low dimensional feature vectors from the origi-
nal image descriptors, allowing the efficient use of indexing structures. In
addition, point configurations allow the implementation of intuitive brows-
ing interfaces by visualization of results on the 2- or 3-dimensional space.
But the benefits of using compact, low dimensional image representations
come with a certain cost in retrieval accuracy. Through a set of experiments,
Sect. 5 attempts to quantify the deviation of retrieval results obtained through
point configurations with respect to the ones obtained through the initial
image descriptions. Finally, Sect. 6 summarizes the conclusions drawn from
the presented evaluations.
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2 Color Descriptors and Similarity Measures

The first step in the design of a content based image retrieval system involves
the representation of images using a set of descriptors. These provide a com-
pact description of visual cues (color, texture, shape) or interest points (e.g.,
SIFT [10]) that allows the definition of similarity measures between images.
The following choices need to be made:

1. The visual cues or types of interest points that will be utilized (e.g., color
and texture).

2. The descriptors for each cue.
3. The similarity measure to be used with each descriptor.
4. If more than one descriptors are used, a fusion strategy that will combine

them into a single descriptor (e.g., [11]), or alternatively, combine the
results of each similarity measure into a single value (e.g., [12]).

In this section it is assumed that a single global color descriptor will be
used, thus an evaluation example is provided for issues 2 and 3 above.

2.1 Histogram and Dominant Color

Global color descriptors are used to describe color properties of an image
independent of spatial color distribution. The most important descriptors of
this form are the well-known histogram and dominant color descriptors.

Both these descriptors can be given by

D = {(ci, pi) , i = 1, . . . , N} , (1)

where ci is a color from a predefined colorspace and pi is the percentage
of image pixels having that color. Of course, having a 3-channel 8-bits per
channel image described by (1) is very impractical, since (1) 2N = 225 values
are used to describe a single image and (2) this level of granularity is not
informative for the purpose of image retrieval. Therefore, images are quantized
prior to extraction of D.

In histograms, the given colorspace (e.g., RGB) is usually quantized to a
predefined number of “bins” independent of the images. While this approach
can reduce the number of values required for D (the colors ci are essentially
predefined for a given colorspace), the description does not adapt to each
image. Consider, for example, a 24-bit RGB image with only 64 different colors
all at the same color region. Then, if the colorspace is uniformly quantized
at N = 27 levels (three levels for each color channel), all these colors will
be concentrated at a single bin; the rest of the 26 color-value pairs are left
unused.

The dominant color descriptor, on the other hand, overcomes this issue by
allowing the use of the more general form of (1) where the colors ci and their
number N can be different for each individual image. Naturally, a method for
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(a)

(b)

Fig. 1. Color reduction using 64, 32, 16 and 8 colors: (a) using uniform color space
quantization and (b) octrees

selecting the appropriate dominant colors ci for each image must be defined.
In [2] regarding the MPEG-7 standard color descriptor the use of the General-
ized Lloyd Algorithm is proposed. In this work, a different approach utilizing
octrees for color reduction [13] was used.

Figure 1 illustrates an example of colorspace quantization (histogram) and
quantization adapted to the image (dominant color) using octrees. In the
latter case a more accurate description of the image is derived for image
retrieval purposes. It is therefore reasonable to select the dominant color over
the histogram descriptor for global color representation.The next section deals
with the definition of similarity measures for these descriptors.

2.2 Distance Metrics

Given a predefined set of colors ci, i = 1, . . . , N , a N × N matrix A with
ajk = 1 − djk/ max(djk) where djk is the distance between cj and ck in their
colorspace and two vectors h1 and h2 with the percentages of each color ci,
the quadratic histogram distance is given by

dh(h1, h2) = (h1 − h2)T A(h1 − h2). (2)

However, (2) cannot be used if the colors ci and their number N are different
for each image.

Deng et al. proposed a similar quadratic metric in [14], for the dominant
color descriptor. If D1 = {(ci, pi), i = 1, . . . , N1} and D2 = {(bj, qj), j =
1, . . . , N2} are two dominant color descriptors, then the distance between D1

and D2 is defined to be

dq(D1, D2) =
N1∑
i=1

p2
i +

N2∑
j=1

q2
j −

N1∑
i=1

N2∑
j=1

2aijpiqj , (3)
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where the similarity coefficient aij is

aij =

{
1 − dij/dmax, dij ≤ Td,

0, dij > Td,
(4)

dij = ‖ci − bj‖ is the euclidean distance between ci and bj , dmax = αTd, α
is an arbitrary value and Td is the maximum distance for two colors to be
considered similar.

Another metric that has been proposed for comparing two dominant color
descriptors D1 and D2 is the Earth Mover’s Distance (EMD). In simple terms,
the EMD is a dissimilarity measure between two images indicating the amount
of “work” required to “move” from the descriptor D1 of the first image to D2

of the second. Imagine the colors ci in the first descriptor as locations in a field
with piles of pi mass of earth each. The colors bj are also locations, but they
consist of holes with capacity qj earth each. EMD denotes the minimum work
required to distribute the piles of earth at ci to the holes in bj. Computation of
the EMD is based on a solution of the transportation problem and is covered
in [15].

A simple experiment was set up in order to evaluate the performance of
each distance metric in a realistic image database scenario. A total of 5,022
images from the corel dataset were used, where each of the images belongs to
a predefined category C. All images were indexed using the dominant color
descriptor with 16 color – percentage pairs. Each image was successively used
as a query and a ranked list of results was retrieved. The performance of a
distance metric was evaluated based on the semantic correspondence of the
results, using the following precision measure:

precisionC =

NC∑
n=1

An

NC∑
n=1

1/n

, (5)

where NC is the number of images in the query image category C, An = 1/n if
the nth result belongs in C and zero otherwise. Maximum precision is achieved
when the first NC results for a query I ∈ C belong to C as well. Note that
it is too optimistic to expect retrieval of the best results at the semantic level
(same category) using only a global color descriptor; however the two distance
measures can be compared in this manner.

A graph of the results is given in Fig. 2, where the horizontal axis cor-
responds to categories C and the vertical axis is the precision (average for
all images in a category).The results are clearly in favor of the EMD, that
consistently achieved higher precision compared to the quadratic distance.
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Fig. 2. Results for retrieval based on dominant color descriptors with quadratic
distance and EMD. Precision (5) vs. category

3 Indexing and Dimensionality

Assume that the image descriptors and associated distance metrics have been
determined and also that the descriptors can be expressed as feature vectors
in a k-dimensional space S. In order to construct an image database, a method
for solving the “Nearest Neighbor” problem must be selected: Given a set of
points P (descriptors) in S (k-dimensional descriptor space) and a query point
q ∈ S, find the closest point to q in P .

The simplest solution is to compare q against all images in the database,
P . This approach, however, poses strict limitations to the size of the image
database due to its high computational cost. To enable implementation of
image databases at larger scales, indexing data structures have to be used
that solve the Nearest Neighbor problem without visiting the entire database.

One of the most popular data structures proposed is the kd-tree [6, 7].
The idea is to construct a binary tree by successively using elements of the
dataset as pivot points to partition the k-dimensional space into hyperrectan-
gles, each containing at most one point. When searching, an initial estimate
of the nearest neighbor is provided (by finding the hyperrectangle that con-
tains the query) and then only hyperrectangles and pivot points that are
possible to contain a point closer to the query than the initial estimate are
visited. Thus, with kd-trees only a subset of the indexed points (i.e., database
images) are visited, compared to the exhaustive search where the query is
compared against all points in the dataset. Searching in n images with the
kd-tree requires at least O(log n) visits and O(n) at the worst case (same as
the exhaustive search). The drawback is that the complexity for each point
visit is increased (since branching conditions, etc. have to be evaluated).
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Still, a very important problem remains, known as “the curse of dimension-
ality” that affects kd-tree efficiency. As the number of dimensions increases,
an exponentially increasing number of hyperrectangles (thus points in the
dataset) will have to be visited to find the nearest neighbor of a query point.

3.1 Limits of kd-Tree Effectiveness

In order to examine the behavior of kd-trees with respect to the dimensionality
of the space considered, the kd-tree data structure and associated algorithms
were implemented and a dataset of 105 uniformly distributed random points
was created for various dimensions. The number of nodes visited per dimension
was measured and the results are given in Fig. 3a.

The number of points visited for a number of dimensions close to 30 is
practically the complete dataset and the kd-tree has no advantage over the
exhaustive search. In fact, the upper limit of dimensions that the kd-tree is
useful is lower, since each visit has additional costs in terms of CPU time.
Figure 3b provides the time (in ms) required per dimension for indexing per-
formed on the same dataset using kd-trees and exhaustive search on an average
personal computer.

These results indicate that for the test computer and implementation
the kd-tree keeps an advantage in terms of computational time for eight
dimensions or less. Clearly, an optimized implementation of the algorithm
would increase this limit, but practically it cannot exceed 15 dimensions.
Furthermore, through the experiments conducted, it was observed that the
efficiency of the kd-tree search is largely dependent on the size of the dataset
to be searched. Larger datasets allow for the kd-tree to be more efficient in
even higher dimensions, compared to exhaustive searching. Also, note that
a uniform dataset (used in the empirical evaluation above) is the worst case
scenario; kd-tree searches are significantly faster within distinctively clustered
datasets.

4 Point Configurations

Two major problems can be identified with the use of kd-trees and similar
indexing structures in image databases:

1. The number of dimensions used by image descriptors is prohibitive for
efficient indexing.

2. Descriptors do not always define points in a k-dimensional space and thus
kd-trees cannot be employed for indexing. The dominant color presented
in Sect. 2.1 is an example of such a descriptor.

Low-dimensional embeddings of descriptors such as those produced by PCA is
a possible solution to the high dimensionality problem. Again, however, this
approach is only applicable to k-dimensional points. Both the above issues
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Fig. 3. (a) Number of visits for nearest neighbor search in the kd-tree for a dataset
of 105 uniformly distributed random points. (b) Time for nearest neighbor search
in ms for the kd-tree and exhaustive search for various dimensions on an average
personal computer
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can be tackled if a low-dimensional point configuration is produced from the
original descriptors.

This problem can be formulated as follows: “Given the observed distances
dij between any two objects (images in the database), produce a configuration
of points in the k-dimensional space, such that the new (euclidean) distances
d′ij are as close as possible to the original dij for all the points”. A measure
of effectiveness for a solution is Kruskal’s stress function (6) [16].

stress =

[∑
i,j(d

′
ij − dij)2∑
i,j d2

ij

]1/2

. (6)

In the case of the dominant color descriptor, the original distances are given
by the EMD, while the derived points are in an k-dimensional space with
euclidean distances d′ij .

4.1 MDS and FastMap

Two techniques that produce point configurations were evaluated, namely
metric Multidimensional Scaling (MDS) [17] and the FastMap algorithm [18].
Metric MDS is a technique that receives as input the observed dissimilar-
ities dij between objects and produces a configuration P ′ of points in the
k-dimensional space through an iterative optimization process. Roughly, each
object is assigned an k-d point (e.g., randomly) and then every point is exam-
ined by computing its distance from all the N − 1 other points. The point is
moved so that it optimizes the stress function. The complexity of performing
MDS is O(N2), where N is the number of objects.

FastMap, on the other hand, solves the same problem by starting from
1 − d and recursively determining the coordinates of the N objects on a new
axis, up to k–d. Computationally, this process is much more efficient than
MDS, with its complexity being O(kN), where k is the number of dimensions
of the target configuration. MDS and FastMap were compared with respect
to the stress function (6) using the corel dataset. It can be seen in Fig. 4
that MDS achieved better results. But the main strength of FastMap is the
O(1) complexity required for the insertion of a new point, contrary to O(N)
required by MDS. In practice, answering a query with MDS (thus embedding
the query object in the k-d space and finding its nearest neighbors) requires
as much time as the exhaustive search at best. MDS is therefore not suitable
for retrieval applications.

4.2 Browsing

An important aspect of any image retrieval system is the visualization and
browsing interface. In the simplest case, thumbnails of result images can be
provided in a list for the user to browse. In the case of images, however, a
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Fig. 4. MDS vs. FastMap stress performance for various dimensions. Experiment
for 500 images

more efficient visualization and browsing interface would provide a grouping
of similar results. Using MDS or FastMap to produce a configuration of points
at two or three dimensions from the result dataset allows its visualization, as
illustrated in Fig. 5. The user is able to view the entire result dataset, zoom to
specific regions and select images. The examples in the figure are derived using
FastMap. If the number of results is relatively small, MDS can be employed
as well.

5 Efficiency of FastMap Configurations

Given a dominant color descriptor Di for each image Ii in the database, the
EMD measures dij between Ii and Ij are computed for all i, j. Subsequently,
FastMap is applied to create a configuration Pk of k-dimensional points, one
for each image. This allows the efficient use of kd-trees for indexing. The
questions that naturally arise have to do (1) with the quality of the retrieval
results and (2) how these results are affected by the choice of k.

In order to evaluate the performance of FastMap configurations for image
retrieval, the ranking results obtained from EMD-based queries (Sect. 2) were
used as ground truth with the same collection of 5,022 images from the corel
dataset. For the same query, the difference in rank between the EMD and
mapped results was used, as follows.

Initially, point configurations of the entire dataset were constructed for
dimensions k = 1, . . . , 32. For each k, each image Ij , j = 1, . . . , 5022 was

submitted as a query, and returned a ranking rjk =
[
Ijk
1 . . . Ijk

5022

]
of all images



Indexing and Browsing of Color Images: Design Considerations 339

(a)

(b)

Fig. 5. (a) Result of applying FastMap for two dimensions on a set of images from
three categories of the corel dataset. (b) Navigation on a larger dataset. Users can
zoom in specific areas, modify all distances by a factor and select specific images

extracted from search at the k-d space. This ranking was compared with the
corresponding EMD rank rEMD

j for the same image, yielding a set of pairs
Ljk = {(pj1, p

k
j1), . . . , (pj5022, p

k
j5022)}. These pairs indicate the rank in EMD

and FastMap for the same result image. For example, a query image from the
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Fig. 6. Example rank results for k = 6 dimensions. The EMD rank (ground truth)
is the y = x line. (a) Results for a random image. (b) The average for all images

“action sailing” category gives (2, 4) which reads “the 2nd result of EMD was
ranked 4th using FastMap”. Figure 6 shows an example of the rank results
for a random image and the average for all images at k = 6 dimensions.

It can be seen that even though the results of EMD ranking and those
of FastMap configurations are not identical, they are averagely very close
to each other at six dimensions. The similarity is practically not improved if
more than 10 dimensions are used. Hence this experiment is an indication that
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by using FastMap configurations for indexing, the retrieval does not deviate
significantly from the EMD results. It is therefore highly unlikely to find images
ranked in the first results by EMD at the lower ranks (i.e., least similar results)
of FastMap based retrieval.

To quantify this observation, another experiment was conducted. Images
were selected at random from all categories (resulting in 100 images in total)
and the retrieval results for these images were observed for EMD and FastMap,
as in the previous. Then, the distribution (pdf) of the random variable dIq,k =
pjr − pk

jr was calculated for k = 1, . . . , 32 dimensions, with pjr and pk
jr as

defined above. This random variable quantifies the difference in rank of a result
for a query image Iq at k dimensions, compared to EMD. The distribution
(histogram) of dIq,k for a random query image Iq at k = 6 dimensions is
shown in Fig. 7.

In order to remove the dependence of the estimated distribution of dIq ,k on
the query image Iq, a number of Monte Carlo experiments were performed,
yielding the ensemble average over 100 randomly selected query images Iq.
The resulting Monte Carlo mean dk = EI{dIq,k} is depicted in in Figs. 8a–c
for k = 3, 6 and 12 FastMap dimensions. The Monte Carlo variance for all
ordinates of the estimate of dIq ,k was pretty low for fixed k (e.g., Fig. 8d for
k = 6), thus ensuring that the adopted distribution estimators are meaningful
and representative.

These distributions allow the computation of the probability P (−d < dk ≤
d) that the difference of results between EMD and FastMap will be less than
d. Figure 9 displays how these probabilities are affected by the number of
dimensions k for various d. It can be deduced that the FastMap results are,
in fact, expected to deviate from the original EMD ranking (for d = 25, P
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is low), however it is highly unlikely for the best EMD results to be ranked
lower than 400 using FastMap.

Whether these results can support the practical use of FastMap in image
database retrieval largely depends on the application. More specifically, it
depends on the browsing and retrieval interface used and the number of results
that are originally visualized. There is a tradeoff between the number of results
returned (larger result datasets possibly require more browsing effort from the
user) and query response times.

Assume the design requirement: “For a query image Iq, the first r results
of the corresponding EMD results should be returned”. One must find the
number of results rfk that must be returned to the user if the dataset is
mapped to k dimensions using FastMap. These rfk results should contain
the first r results of EMD with a high probability. Again a set of Monte
Carlo experiments are performed that provide the ensemble average over 100
randomly selected query images Iq. The resulting Monte Carlo mean p(r, rfk)
indicates the estimated percentage of the first r results of EMD present in the
first rfk of FastMap at k dimensions. Its value is depicted for various rfk in
Fig. 10. For example, if k = 8 and rf8 = 100 then it is estimated that 92% of
the first r = 10 EMD results will appear. In other words, the probability for
any of the first 10 EMD results will be found if 100 results are returned using
FastMap at eight dimensions, is estimated to be 0.92.

6 Conclusions

From the results of the previous sections several useful conclusions can be
drawn.

For the global color representation and specifically the dominant color
descriptor, the Earth Mover’s Distance appeared to be the most accurate
distance metric in the conducted experiments.

For the indexing problem, kd-trees were more effective than exhaustive
search, but their practical application is limited to a relatively low number
of dimensions. Moreover, kd-tree structures index points in a k-dimensional
space that dominant color descriptors do not provide.

For visualization and navigation purposes, the MDS approach proved more
precise than FastMap in terms of the stress measure. However its practical
use is limited due its high computational cost. FastMap is better suited to
large-scale image databases.

FastMap was also used to provide low dimensional point configurations for
efficient indexing. A series of experiments illustrated how the EMD ranking
results are affected by the number of dimensions used in the FastMap config-
urations. Using a configuration with relatively low dimensionality (e.g., 6–8
dimensions) in conjunction with a browsing interface that allows the concur-
rent visualization of a large result set seems to be a reasonable compromise
between retrieval accuracy and fast response times.
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Fig. 10. (a) p(r, rf6) for various result numbers and k = 6. (b) More detailed view
for small number of results and k = 8

These evaluations outline the problems that must be tackled and the deci-
sions that need to be made for the various stages of a content based image
retrieval system design. For the example evaluations above, an image database
system implementation can be proposed. The operations related to the con-
struction of the database as well as query answering are outlined in Figs. 11a,b,
respectively.
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Fig. 11. (a) Steps for constructing an image database. (b) The process of query
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