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Optimal Filter Banks for Signal Reconstruction
from Noisy Subband Components

Anastasios N. Delopoulos, Member, IEEE, and Stefanos D. Kollias, Member, IEEE .

Abstract— Conventional design techniques for analysis and
synthesis filters in subband processing applications guarantee
perfect reconstruction of the original signal from its subband
components. The resulting filters, however, lose their optimality
when additive noise due, for example, to signal quantization,
disturbs the subband sequences. In this paper, we propose filter
design techniques that minimize the reconstruction mean squared
error (MSE) taking into account the second order statistics of
signals and noise in the case of either stochastic or deterministic
signals. A novel recursive, pseudo-adaptive algorithm is propesed
for efficient design of these filters. Analysis and derivations are
extended to 2-D signals and filters using powerful Kronecker
product notation. A prototype application of the proposed ideas in
subband coding is presented. Simulations illustrate the superior
performance of the proposed filter banks versus conventional
perfect reconstruction filters in the presence of additive subband
noise.

I. INTRODUCTION

ULTIRATE signal processing has recently gained great
Mpopularity in applications such as digital audio/speech
coding, progressive image coding, spectrum analysis, and
time-varying system identification. In conjunction with its ana-
log counterpart, namely time-scale transformations, subband
processing has become a topic of extensive research. The
core idea is to divide the signal domain into complementary
frequency bands and separately process each band.

The use of decimating filters to produce the subband signals
is accompanied by appropriate interpolators that resynthesize
the original signal. Extensive research has been carried out
on the design of decimators/interpolators that allow perfect
reconstruction [6], [22]. Efficient implementation schemes
that use the so-called polyphase decomposition structures are
employed to reduce the complexity of decimators/interpolators
to levels as low as FFT.

When perfect reconstruction is the issue, the design of
decimation/interpolation filters encounters removal of both
phase and amplitude distortions. The associated analysis is
based on the assumption that all subband signals are avail-
able to the interpolation bank with infinite precision. Thus,
perfect reconstruction filter banks can be thought of as a
combination of filters with all-pass and linear phase overall
transfer function. In most practical applications, though, infi-
nite accuracy is not possible. Subband signals are quantized
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and/or corrupted by external disturbances. Typical examples
are subband coding applications, where quantization of sub-
band signals is necessary due to limitations in the bandwidth
of transmission channels or in the space of storage media;
consequently, reconstruction is performed on the basis of
subband signals that include quantization error (see, e.g.,
[24] for a description of the influence of subband quantiza-
tion error to the reconstructed signals.) In addition, external
disturbances of the transmission channels can be modeled
as an extra subband noise term; the compensation of noise
in problems of data fusion available in various resolutions
can also be modeled in the same framework. It should also
be mentioned that quantization noise may have time-varying
spectral characteristics, especially in variable bit rate situations
that require on-line switching between modes with different
number of quantization levels. The goal of the present work
is to propose methods for designing interpolation filters that
suppress the effects of additive subband noise. This i$ possible
by adjusting the impulse responses of the interpolating filters
to the particular autocovariance structures of the original
signal and of the additive noise. Recent publications (see,
e.g., [9], [11], and [18]) examine the design of appropriate
compensators that, preceding the synthesis stage, suppress the
effects of quantization noise; the noise is assumed to obey the
gain plus noise model that is suitable for optimal Lloyd-Max
quantizers.

The method that we propose here compensates quantiza-
tion—or any other type—of noise, by appropriately adjusting
the synthesis filter bank, i.e., the transfer functions of the
interpolators. In general, no assumption regarding the nature
of the noise is necessary; colored noise even correlated to
the input signal can be easily handled. The latter is of
particular importance in coarse quantization scenarios where
the resulting noise is highly correlated to the subband signals
(see, e.g., [1], [10], and [24]).

Our approach is developed purely in the time domain and
essentially uses the mean squared error (MSE) criterion as
a measure of similarity between the original signal and the
reconstructed version of it. Both stochastic and deterministic
inputs are considered. The proposed design algorithm is time
adaptive, being able to track signals with slowly time-varying
spectral characteristics.

In Section II, we cover some preliminary definitions and
tools that are used in multirate signal processing. We quote the
standard notation for decimation and interpolation, and briefly
refer to the necessary and sufficient conditions that establish
perfect reconstruction. The notation covers the general case,
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for arbitrary P > 2 subbands; for convenience, however,
in the sections that follow we adopt the simplest paradigm
of P = 2. In order to derive the optimal filter design
analysis of the next section, we present the relation between
decimators/interpolators with: i) matrix operations (refer to
[19] for a similar approach); and ii) multichannel filters (see,
e.g., [6], [21], and [22]).

In Section III the matrix and multichannel approaches intro-
duced in Section II are used to derive optimal reconstruction in
the presence of noise. The matrix approach that is considered
first yields the overall optimal synthesis filters at the cost of
solving a set of linear equations of order equal to the length of
the available data record. The resulting optimal interpolating
filters are, in general, time-varying and not of prespecified
length; they appear as rows of a square matrix.

On the other hand, multichannel formulation yields optimal
filters within the class of linear time-invariant FIR filters of
prespecified length. The set of linear equations to be solved
in this case is of order equal to the size of the filters rather
than the size of the data record. In addition, we show that
the resulting system can be solved recursively in time by
means of a recursive least squares (RLS) type of algorithm.
Comparison between the two approaches is included in the
simulation Section VI :

By the end of Section IIL, the optimal filter bank expressions
are revisited for the special cases as follows: i) additive noise
uncorrelated to the input signals and ii) quantization noise
produced by optimal Lloyd-Max quantizers.

Section IV extends the methodology proposed in Section III
to 2-D signal processing. Separable 2-D impulse responses are
encountered, which lead to optimal filters of the same structure
as in the 1-D case. Effective Kronecker product notation and
properties are used in order to handle the 2-D problem via
1-D optimization tools.

Section V refers to real-world applications of the proposed
design techniques. We mainly consider the variable bit rate
scenario in subband coding of 1-D and 2-D data, making
the assumption that quantization error can be modeled as
second-order stationary additive.

Section VI contains simulation experiments that illustrate
the advantages of the proposed filters versus the fixed perfect
reconstruction filters that are currently used. Simulations are
performed on synthetic as well as on real 1-D and 2-D image
data.

II. DECIMATION AND INTERPOLATION:
DEFINITION AND REPRESENTATIONS

Subband processing and related applications assume a dig-
itally implementable mechanism that decomposes a given
signal, z(n), into, for example, P sequences, where P >
2, each containing different frequency information of the
original signal. In addition, an inverse mechanism that per-
fectly resynthesizes z(t) from its subband components is
required. Forward signal decomposition, called decimation, is
implemented using digital filters, e.g., ho, b1, -+, hp—1 With
transfer functions centered at different frequencies. The ith
subband component is formed by passing z(n) through h;(n)

and subsampling by P. The decimation procedure is therefore
described as

yi(n) =Y hi(Pn—k)u(k). 2.1
k

Subsampling in (2.1) is accomplished by multiplying n by P in
the RHS of the expression. The operation of (2.1) is linear but
not time invariant. A slight modification of the above expres-
sion turns it into a sum of linear and time-invariant filtering
operations, which involves appropriately defined subsequences
of h;(n) and z(n), namely their polyphase components as
follows:

P—

yi(n) =Y > ha(n — k)z(k)
k

1=

_-

2.2

where hj;(n) and x;(n) are the polyphase components of h;(n)
and z(n), respectively, defined as
ha(n) & hy(Pn+1) 1=0,---

,P—1 (2.3a)

and

a(n) & z(Pn—1) 1=0,---,P-1. (23b)

Decimation itself decomposes the original signal in subband
sequences that can be used in various signal processing tasks
such as pattern recognition [15], [20], modeling {4], [5],
identification -[2], [5], and image analysis [15]. In most of
these applications and especially in digital communications
applications [22], reconstruction of the original signal should
be possible through the inverse procedure, called interpolation.

Interpolation is performed by first inserting P — 1 zeros
between successive samples of the subband signals and then
passing the resulting sequences through P filters filn), i =
0, --- , P —1; finally, the outputs of all filters are summed up
to form an approximation Z(n) of z(n)

P-1
#n) =3 > filn— Pk)yi(k). 24

i=0 k

It turns out (see, e.g., [14], [22]) that the use of appropriate
combinations of decimation and interpolation filter banks
guarantees perfect reconstruction, i.e., £(n) = z(n).

For convenience in the following analysis we shall consider
only the P = 2 case; all derivations and assertions can be
easily generalized to any number of bands at the cost of
notational complexity. By the end of this section we shall
translate (2.1) and (2.4) first into a pair of matrix operations
and next into a couple of multichannel filters, the latter based
on the polyphase notation.

A. Matrix Representation of Decimators/Interpolators

The computations performed in (2.1) and (2.4) are of
convolution type; thus, they can be written in matrix form.
For a finite impulse response (FIR) digital filter A(n) and for
P = 2, let us define the matrix

N
Hi(k, 1) & hi(2k=1), k=0,--, 5 —1,

l=0,---,N-1 2.5)
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where N is the length of the input signal z(n). Using (2.5),
decimation can be written as :

yi = Hix (2.6

where the elements of matrix H; correspond to the im-
pulse response coefficients -h;(n) according to (2.5), ie.,

x 2 [2(0), -, 2(N-1)|7 andy; 2 {5:(0), -+ , ul(N/2)—

1]}*. Equation (2.6) is an exact duplicate of (2.1) except on the
boundaries of vector y;; these boundary effects are, however,
of decreasing importance for large values of V.

Let matrix F; be formed similarly to (2.5), based on the ¢th
interpolation filter f;(n); then the output of the corresponding
interpolator is given by Fy; and the reconstructed signal
vector is

Q.7

Let us define vector y as the concatenation of the 2 subband

vectors Vi, ie., y 2 [¥3, y¥]¥ and form the augmented
matrices
_ |Ho
H = [ Hl] (2.82)
and
_ |Fo
F= [F1 } Q.Sb)
Then, decimation is described as follows:
and interpolation by
%= FTy. (2.9b)

Equations (2.9a) and (2.9b) represent the decimation and in-

terpolation procedures in the form of vector space projections. .

A similar approach along with properties of matrices H and
F can be found in [19], where infinite size matrices are
considered in order to overcome boundary effects. In the
following we prefer, however, to restrict our approach to the
finite matrix formulation since, as N — oo, boundary effects
introduce a finite error that does not affect the validity of the
optimal design analysis presented in this paper.

It should be mentioned that the perfect reconstruction prop-
erty of the filter banks described by (2.9a) and (2.9b) is very
conveniently expressed as

FTH = Iy,

using matrix formulation, where Iy stands for the N x N
identity matrix.

When additive noise disturbs the subband signals the input
to the interpolation filter bank can be written in vector form
as z =y + v, where the IV x 1 vector v is a concatenation of
P noise components each of length N/P. The overall effect
of decimation/interpolation is then described as

k=F'2=F'Hx+ FTv:

B. Multichannel Representation of Decimators/Interpolators

In the previous paragraph, interpolation and decimation
were formulated in a matrix/vector multiplication represen-
tation. Alternatively, decimating and interpolating filter banks
can be shown (see, e.g., [1], [16]) to correspond to multichan-
nel filters. Namely, (2.1) and (2.4) are equivalent to

y(n) =Y H(k)x(n - k) (2.102)
and ¢ : .
%(n) = F(k)Ty(n - k) (2.10b)
k
respectively, where,
A [ =z(2n) ]
x(n) = (20 — 1)]
%(n) £ _fégiﬂn]
A [yo(n)
y(n) = _y1(n)] (2.11)

and H(k), F(k) are multichannel impulse .response matrices
of the form

A hoo k) hm(k)
H(k) [hlogk) hn(k)]

hio(k) £ ha(2K)

ha(k) 2 hi(2k+1), i=0,1 (212
and .
o A [ foo(k)  for(k)
k) = [fw(m fn(k)}
Folk) 2 f:(2K)
fuk) 2 £i(2k—1), i=0,1.  (2.12b)

The advantage of the above multichannel formulation is that
it can lead to the derivation of optimal FIR interpolators of
prespecified length. Let h;(n) be FIR filters. Then (2.10a)
yields . )

y(n) =Y H(k)x(n—k) -
k=0
= H,x,(n) (2.13)

where H, and x,(n) are augmented versions of H(k), x(k) .

Ho 2 (H(0) - H(p)] (2.142)
is of size 2 x 2(p + 1) and
x(n)
Xq(n) =
x(n ~p)
z(2n)
z(2n - 1)
= : (2.14b)
z(2n — 2p)

z(2n—2p—1)
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is of length 2(p + 1). On the other hand, assuming that f;(k)
are also FIR filters, (2.10b) yields

i F(k)Ty(n - k)

x(n) =
. k=0
=F;—'1ya(n), (2.15)
where
F(0) ,
F,2 [ : } (2.162)
F(q)
is a 2(¢ + 1) x 2 matrix and
y(n)
ya(n) = M
y(n—q)
Yo(n)
y1(n)
= : (2.16b)
yo(n — q)
yi(n —q)

is a vector of length 2(¢ + 1). Combining (2.13) and (2.15),
we obtain
H, x,(n)
Ya(n) =
Haxa(n - q)
=HX(n)

where the 2(¢ + 1) X 2(p + ¢ + 1) matrix A is formed by
augmenting shifts of H,, i.e.

(2.17a)

rH, Ce T
0, H, '
0, 0, H,
HE| - (2.17b)
o o md
and the 2(p + ¢ + 1)-dimensional vector X' (n) is defined as
z(2n)
z(2n —1)
X(n) £ :
: z(2n — 2q — 2p)
z(2n —2q—2p—1)
x(n)
(n—p—2q)

in the definition of H, 02 is the 2 X 2 nuli matrix. Inserting
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x(n)

hy(n)

H(n)

Sikny

Fig. 1. Noise-free decimation interpolation with P = 2,

lw(n)
Yo(n) 20(m)

OO0 |

vi(r)

zy(n} .
“

Fig. 2. Decimation interpolation with additive subband noise.

x(n)
ho()

E(ny
H—

yi(n}
hy(m)

included in the subband signals, the interpolator of (2.15)
accepts as input some

z(n) = y(n) + v(n) 2.19)

where v(n) = [vg(n) w1(n)]T includes the subband noise
disturbances. In the form of (2.16b)

Za(n) = ya(n) + va(n). (2.20)

In this case, the RHS of (2.18) should be modified to include

a term that is due to the noise, as follows:
x(n) = F'24(n) ,
=FTHX(n) + FTv,(n). (2.21)

1. OPTIMAL INTERPOLATORS

Perfect reconstruction filters, as presented in Section II,
guarantee that £(n) = z(n) provided that all subband signals
are exactly computed and used in the synthesis filter bank. In
practice, however, there are a variety of reasons for deviations
from this assumption. In [22], for example, the effect of finite
precision arithmetic was examined as an error source, and
optimal bit assignment for the filter taps was proposed as
a means to reduce distortions of this origin. Still, though,
subband noise is always added to y;(n) due to necessary
quantization of the transmitted signals. On top of that, external
additive noise can model transmission imperfections. In the
following discussions all kinds of noise are assumed to be sta-
tionary. No assumptions regarding the spectrum of the noise,
nor intersubband independence, are due. The general model
that we consider is depicted in Fig. 2, where {v;(n)};=0,1 are
the additive noise components and

zi(n) = yi(n) + vi(n)

are the noisy versions of the subband signals that are fed to
the interpolation bank.

(2.172) into (2.15), we get an expression of the total effect of ~ If {H;(z), Fi(z)} consist of an analysis/synthesis structure

decimation/interpolation
%(n) = FTHX (n).

Equation (2.18) holds provided that all subband signals are
noise free [c.f., (2.15)]. If additive noise components are

(2.18)

and.due to linearity, the reconstruction error will be

A A
=X—-—X

x - FTg .
= (I-F'H)x-F'v

€

@3.1)
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in matrix representation and

e(n) £ x(n) ~ X(n)

= x(n) — F; z4(n)
= x(n) - FTHX(n) — FIv,(n) 3B.2)
in multichannel formulation.

In the following, for a given analysis bank {H;(2)}i=0,1,
we seek the best synthesis bank {F;(2)};=0,1 that minimizes
the power of the error signal e(n). Both formulations can be
used in order to establish optimality. It is shown that in the
matrix formulation, optimal design reduces to a vector space
projection, while in the multichannel formulation optimality
is achieved using standard Wiener filtering methods. In both
cases, knowledge of second-order statistics of the signal and
the noise are necessary. Our approach is general enough in
order to include stationary and nonstationary input signals, the
latter including deterministic sequences as well. In any case,
the noise processes are stochastic.

A. Matrix Formulation

In this formulation, we adopt the Euclidean norm of the
N x 1 vector € as reconstruction error measure, namely

J & E{"e}

=tr E{ee”}. (3.3)
Substituting (3.1) in (3.3), we get a least-squares minimization
problem that accepts an optimal solution w.rt. £ given by
(see, e.g., [13])

Fot =R'R.. (34)
where hereafter Rab: denotes the (cross-) covariance matrix
E{abT} of the column vectors a and b. .

The error covariance is then given by

C=F {&'ET}
=Rgz — Rmsz_lezm (353.)
and the corresponding minimum reconstruction MSE is

Jmin =trC. (35b)

It can be proved that expression (3.4) reduces to the conven-
tional synthesis filter bank (H”)~! in the absence of subband
noise.

Expression (3.4) for F,,; was derived without imposing any
constraints on the structure of F. As a consequence, it does
not have the structure of (2.8b) in which Fp, F; are of the
form described by (2.5). This implies that the overall optimal
(in the mean-square sense) reconstruction, achieved by linear
projections of z, is not in general possible using time invariant
interpolators.

Summarizing, optimal filter selection based on the preceding
matrix formulation has the advantage of yielding the overall
optimal interpolating filter banks among the class of linear
projection operators from the subband to the original signal

domain. Unfortunately, this major property is accompanied by
two discouraging disadvantages:

1) The size of the linear set of equations that yield these
optimal filters is of order N, namely, the size of the sig-
nal. This implies that, unless appropriate segmentation
of the original signal is used, the problem is intractable.

2) The length of the resulting FIR interpolators is not
possible to be specified.

- 3) The interpolating filters are in general time varying.

In the sequel, we turn to the multichannel approach that
yields optimal filters in the class of time-invariant ones with
prespecified length. The derivations that follow show that
these filters can be computed by solving a set of linear
equations of order equal to the size of the FIR filters used
for decimation/interpolation.

B. Multichannel Formulation

In this formulation, optimality of" the interpolators is
equivalent to the minimization of the distance between the
reconstructedX(n) and the original x(n) vector sequences. As
a measure of the interpolation accuracy we pick the norm,
as follows:

Tr = E{[x(n) — %(n)]"[x(n) — %(n)]}
=tr E{[x(n) — %(n)][x(n) — %(n)]"}
=tr (E{x(n)x(n)"}

+ FTE{z.(n)z,(n)T}F,

+ FIFE{z,(n)x(n)T} — E{x(n)2,(n)T}F,). (3.6)

The E{.} operator is defined (see, e.g., [12]) as

F{z(n)} & Jim Z E‘{x

in order to take into account nonstationary input signals. In
all cases we make the assumption that for all signals under
consideration the above limit exists and is finite; this is true
under common mixing conditions regarding the moments up to
order four of the involved signals. It should be mentioned that
when we consider signal sequences of finite length, the limit
in the definition of £{.} should be replaced by summation
over all available data samples.

For fixed decimators, minimization of Jr w.r.t. Fa is
accomplished setting
which yields the following system of normal equations:
Repzala = Rzpo 3.7
where
Ri.z, £ Bza(n)za(n)"} (3.82)

is the autocovariance matrix of the noisy subband signals
z,(n) of order 2(q + 1) and

R. . 2 B{z.(n)x(n)T} . (3.8b)
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is the cross-covariance matrix of the noisy subband vectors
Z,(n) and the input vector x(n) of order 2(g + 1) by 2.

Using simple algebraic manipulations one can prove that in
the absence of additive subband noise the conventional perfect
reconstruction synthesis filters obey (3.7).

Both expressions (3.4) and (3.7) for the computation of
optimal reconstruction filters include the (cross-) covariance
matrices of the input signal and the noisy subbands. Hence,
estimation of the necessary covariance lags is required in some
stage of the filter design procedure. In Section V we describe
a generic application of the above ideas to subband coding
that solves the problem of estimating R.. and R, matrices
at the transmitter’s side.

C. Recursive Implementation

The normal equations that yield optimal interpolators in-
volve the theoretical values of the covariance structures of the
signals. In practice, we replace the expectations by summations
over the available data record; consistency of the resulting
parameter estimators can be established along the lines of [12].
Given a data record of length NV, estimates of R, _,, and R,
can be obtained in a batch mode and then (3.4) or (3.7) are
solved by replacing R, ,, and R, . by their estimates.

Alternatively, time-recursive algorithms can be employed
for solving these equations in a computationally efficient
manner; moreover, by inserting an appropriate forgetting factor
in the recursive definition of the auto- (cross-) covariance
estimators, we make the resulting parameter estimators able
to track slow variations of the signals’ spectral characteristics.
In the sequel, we concentrate to the multichannel formulation
and correspondingly to (3.7) in order to illustrate one of the
possible recursive schemes that can be used.

Let '

N-1

Oy = > za(n)za(n),

n=0

| V-1
oN = ¥ nz::o 2z, (n)x(n)" (3.92)

be the estimators of the covariance matrices R, ., and R, .
or, in a recursive form

Oy =A0n_1 +24(N)zo(N)T,

ON = ApN-1 + 2o (N)x(N)T (3.9b)
where the forgetting factor A < 1 is a value, usually close
to one, that tunes the memory of the estimation procedure;
subscript N denotes the time at which ®x and ¢y were
estimated. Using the matrix inversion lemma and following the
derivation of RLS algorithm (see, e.g., [12], pp. 306-307), we
obtain the RLS type of algorithm of Table I, where Py = 3,
K (N) is the so-called gain matrix and Fiy is the optimal filter
at time point N. The above RLS algorithm yields, for A =1,
exactly the same solution with the batch algorithm,- while
for A < 1 it behaves as a pseudo-adaptive filter parameter
estimation scheme.

TABLE 1
RECURSIVE IMPLEMENTATION OF OPTIMAL SYNTHESIS FILTER DESIGN

Proposed Recursive Algorithm
Update Procedure:

PN—-I za(N)
A+ za(N)T PN-l za(N)'
I Fy=Fpy_y+K(N) [ X(N) =2,(N)" Fy_]
1 Py 2,(N) 2,(N)T Py_y
Py [ P R LN Py 2 }

I K(N)=

Initialization: Batch estimation of Py = ®;'

Special Cases of Additive Noise: The general optimal solu-
tions of (3.4) or (3.7) can be straightforwardly rewritten for
two special scenarios appearing in the literature, as follows:

1) Noise Uncorrelated to the Input Signal:

In the matrix approach since E{xv”} = 0 and using
(2.9v) we get R,, = HR,,HT + R,, and R,, =
HR,.. Hence, (3.4) can be rewritten as

Fo.pt = (HRa:mHT‘l'va)_lHRxm- (310)
Similarly, in the multichannel approach using (2.17a),
after some manipulation we conclude to

Fopt = (HRxxHT 4 Ryyo,) “HRxx. @3.1D)
P aVa

2) Lloyd-Max Quantizers—The Gain-Plus-Noise Model:

" When quantization of the subband signals is per-
formed following the Lloyd-Max algorithm (see, e.g.,
[8], Section 6.2), the distance between y;(n) and z;(n) =
yi(n) + v;(n) is minimized. It turns out that under this
condition the quantizers are, in general, nonuniform,

" and the quantization noise v;(n) is correlated to y;{n)
but orthogonal to z;(n). It can be also proved that a
- gain-plus-noise equivalent model,

zl(n) = aiyi(n) + ri(n), i=1,2,. 3.12)
exists where
_ . Efvi(n)’} _
Cki:].'— W, E{Tz('ﬂ)}—o

and ‘ E{y,(n)rl(n)} =0.

Optimization in subband reconstruction for such types
of quantization noise have been treated in the literature
by inserting appropriate scalar compensators before the
synthesis band (see, e.g., [9], [11], and [18]). In the
present work, we incorporate the compensator in the
filters of the synthesis bank by adjusting their impulse
responses to the spectral characteristics of signals and
noise.

In matrix notation, let A 2 00 o] and A 24 Ings.

Then, the gain-plus-noise model along with (2.9a) yield

z=Ay+r=AHx+r (3.13)
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where r is defined similarly to z, y, and v. Consequently,
we haveR,, = AHR,, HTAT + R,, and R,, = AHR,,.
Hence, (3.4) rewrites as

Fopt = (AHR,oHTAT + R,,)"'AHR,,.  (3.14)
In multichannel notation
z(n) = Ay, (n) + rq(n) (3.15)

where r,(n) is defined from r;(n) in a manner similar to

Vo(n) and A 2 I, ® A. Plugging the above expression to the
definitions of R, ., and R, , and using (2.17a), we get

Fopt = (AHRyxHT AT + R, .. ) ' AHRyxyx.  (3.16)
/4

1Vv. EXTENSION TO 2-D SIGNALS

In the area of still and moving image-compression, subband
coding plays an important role. In fact, subband process-
ing competes with transform coding, mainly discrete cosine
transform (DCT)-based compression schemes, in the race to
establish a standard for lossy image coding.

'Pioneering work on image compression algorithms that
employ separate coding of spatial frequency bands can be
found in [23] and [25]. 2-D perfect reconstruction filter banks
are also considered in [14]. The dominant approach is to
implement 2-D decimators/interpolators using 1-D perfect
reconstruction filter banks; this approach is equivalent to using
2-D filter banks with separable impulse responses. In this setup
the original 2-D signal z(m, n) is decimated into four subband
components y;;(m, n) ¢, j =0, 1 according to the following
equation:

yis(m, n) =Y > REDAG(R)z(2m — 1, 20— k). (4.1)
E o1
Superscripts ¢ and r denote column- and row-wise operations,
respectively. As in the previous section, we have adopted
decimation by P = 2, which is commonly used in practice.
The reconstruction counterpart of (4.1) is given by

1

=5 3535 3 SITRES

=0 j=0 "k 1
fi(n = 2k)yi; (L, k)

which yields a reconstructed version #(m, n) of the origi-
nal image x(m, n). Perfect reconstruction, ie., £(m, n) =
x(m, n) is guaranteed, provided that the 1-D filter banks
arplied successively on the columns and rows of the image
separately satisfy (2.5a) and (2.5b). In particular, QMF filters
(2.6a)—(2.6e) should be satisfied.

In the sequel, we assume that the analysis filter banks are
of perfect reconstruction type and seek optimal synthesis filter
banks in the sense of minimizing the effect of additive subband
noise. This means that (4.1) is still holding true, while in (4.2)
the subband components y;;(I, k) should be replaced by

zij (1, k) = yi; (1, k) 4+ v (4, k)

(4.2)

4.3)

where v;;(I, k) are 2-D, zero-mean, additive stationary noises.
Both matrix and multichannel representations used in the

- where H® = [H] H = [

previous sections are extended to the 2-D case, in order to
reformulate (4.1) and (4.2) and to express the reconstruction
error in a way that allows easy derivation of optimal (in the
mean-squared-error sense) reconstruction filters.

A. Matrix Representation
Let

x = [z(m, n)lm=0, ..., N1, n=0, -, N-1

be an N x N matrix corresponding to the original image and,
ignoring boundary effects, let

Yij = [Wij(my 7)lm=0,....(N/2)=1,n=0,...(N/2)—1,
4, 3=0,1
be the four N/2 x N/2 subband components. If the decimating
filters have FIR impulse responses of order much smaller
than N, equation (4.1) can be well approximated, apart from
boundary inaccuracies, as

yij = HixH" (4.4a)
where the N/2 x N matrices Hf and H} are of the form of

(2.5). Then, the N x N matrix that contains all four subband
components is defined by,

- |:y00 y01}
Yio Yu
—Hc HT (4.4b)

] in accordance with (2.8a).
Equation (4. 4b) is the 2-D countelpan of matrix formulation
describing 1-D decimation by (2.92). Following the same
notation, interpolation described by (4.2) can be written in
matrix form as
x=FTyFr 4.5)
where the N x N matrices F'° and F" are generated from
f5 and f7, respectively. In this setup, perfect reconstruction
requirernent is equivalent to
CFPTHe = FTH = Iy. 4.6)
Expressions of (4.4b) and (4.5) can be both rewritten in a more
convenient form using Kronecker product notation, namely,
¥ =(H" @ H)%, (4.72)
and '
® )y (4.7b)
vec {%} and
y 2 vee {y} are N2 x 1 column vectors. Notation
a = vec{a}, which is frequently used in the following,
means that the column vector « is formed by stacking up
all columns of «, ie., a(iN + j) = A(s, ). In (4.7a) and
(4.7b) we used the property vec {ABC} = (CT-® A)vec {B}
of Kronecker products (for definition and properties .of
Kronecker products refer, for example, to [17, pp. 237-241]).
When additive noise disturbs:y;;(m, n) (4.7b) should be
replaced by

. ~ EAN
respectively, where X vec{x}, X =
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x=(F" @ F)z

where z = ¥ + V, using obvious notation. Formulation of
(4.7a)—(4.7¢) resembles the structure of (2.9a) and (2.9b).
Hence, for fixed decimators H§, H{ the optimal in the mean-
squared-error sense interpolator is given by
F"Pt =F:pt ®Focpt
=Rs: Rz 4.8
where Rz; £ E{#37} and R:; = E{#xT}. Equation (4.8)
yields the optimal N? x N? matrix F,, rather than F¢,, and
Fy,; separately. The latter can be next computed within an
unimportant scalar ambiguity from their Kronecker product
exploiting the following lemma, which provides a somewhat
general way for approximating 2-D nonseparable problems by
separable ones: .
Lemma 4.1: Let A, B be M x N matrices and C =
A ® B. Define the MN x MN matrix C' via the following
rearrangement of the entries of C:

C(IN +n, kN +m) & C(mN +n, kN +1)
k1=0,-- ,N=1
m,n=0,---, M—-1.

If A = vec {A} and B = vec { B}, then we have the following:

1) C = ABT.

2) rankC = 1.

3) If s is the single nonzero singular value of C' and w,

v the corresponding singular vectors, then A = syu,
B = 82, and 81892 = s.
Proof: From the definition of Kronecker products it can
be easily checked that the particular rearrangement C of C
satisfies 1); assertions 2) and 3) are immediate consequences
of part 1).

Due to this lemma, Fy,, and F7,, can be obtained from
Fopt by first forming F‘om and by then using singular value
decomposition as described by the aforementioned lemma. It
should be mentioned that in practice more than one singular
values may be nonzero; in this situation, the maximum singular
value and the corresponding singular vectors should be used.
Due to SVD properties [3] the resulting F';,,, and F;,, matrices
will have the closest to F,,: Kronecker product among all
matrices of the same dimension.

B. Multichannel Representation

Decimation and interpolation for 2-D signals can be trans-
formed into a multichannel linear filtering using polyphase
analysis in a manner similar to that used in the 1-D case.
Decimation can be rewritten using (4.1) as follows:

yij(m, n) =
DD MLHE I HC/ESY)
k !

[ z(2m = 21, 2n — 2k)

z(2m—2l, 2n—-2k—1)
z(2m—20—1, 2n—2k)

z(2m—2l-1, 2n—2k—1)

hy (2k) ] (4.92)

x [h;(Zk +1)

4.7c)

or

yoo(m, n)  yor1(m, n)
y(m, n) = {y(l)ﬁ(m, n) yli(mv n)]

SN H(W)x(m—1,n—k)H" (k)T (4.9b)
k 1

>

where H°(l) and H"(k) are defined similarly to H(k) in
(2.12a) and

A [ z(2m, 2n)

A z(2m, 2n -1
x(msm) = | om — 1, 2n) : ]

z(2m -1, 2n —1)

In particular, for FIR decimators of order p. and p, for
columns and rows, respectively, (4.9b) yields

y(m, n) = Hox,(m, n)H T (4.10)
where |
Hg = [HY0) H(1) --- H(p.)],
Hy 2 [H(0) H'(1) - H'(p)] (lla)
and
Xq(m, n) 2 _
x(m, ’I'l) X(m, n— p'r)
x(m —1, n) x(m—-1,n-p,)

(4.11b)

x(m_pm n) x(m_pcv n_p'r‘)

is 2 2(p; + 1) x 2(p, + 1) sliding window of the input image
z(m, n). - '

Interpolation by separable 2-D filters can be expressed
using (4.2) and grouping together appropriate output values,
as follows: ,

. a [ &(2m, 2n) #(2m, 2n — 1)
x(m, n) £ Le(igmrz 1,n2n) :f:(ggmri 1,n2n - 1)]
= Y > F W y(m—1,n-k)F(k) (“4.12)
k l
where
. A [f52n) fe(2n—1)
P 2 (G0 Hon )]
and ‘

5(2n) f(2n-1)
F'(n é [fO ( (:. X
W= frzn) frn-1)
Equation (4.12) can be written in a more compact form for FIR

interpolators of order (¢., ¢») in a manner similar to (4.10),
namely

%x(m, n) = FTy,(m, n)F] 4.13)

where the augmented matrices Fy., I, are defined from F*°(n)
F7(n) as in (2.16a), and

Ya(m, n) 2
y(m7 n) y(ma n-— qr)
[ : : 4.14)
y(m — gc, n)

y(m —ge, n—gqr)
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Using Kronecker product notation, we can rewrite (4.13) as

x(m, n) 2 vec {x(m, n)}

= (" @ F;T)ya(m, n) 4.15)

where y,(m, n) 2 vec {¥a{m, n)}; in (4.15), we used the
property of Kronecker products

vec {ABC} = (CT ® A) vec B.

Expressions (4.12) and consequently (4.13) are the inter-
polation formulas when separable 2-D interpolators are used.
For the general 2-D case, however, i.e., when nonseparable
interpolators are used, (4.2) should be modified to

1

(m, n) Z Z Z fiz(m =20, n — 2k)y;;(L, k).
=0 j=0 &k l
Hence
x(m, n) 2 vec {x(m, n)}

= > 3N Flm—1,n-k3(l, k)
ko1
=Y D F(, ky(m
E o1
where we have the matrix F(m,n) at the bottom of the

page, and y(m, n) 2 vec {y(m, n)}. For FIR interpolators
fij(m, n) of order (g., g), (4.16) can be written as

—lLin—k) (4.16)

x(m, n) = _
[F(07 0) F(la O) Tt F(Qca 0)
F(0,q.) F(1,q) -+ F(q, qr)]
y(m,n) ]
y(m—1,n)

y(m —qc, n)

S’ (ma n— qr)
y(m—1,n-g.)
Ly (m ~ ge, n — ¢y) |
The data vector of the RHS of this expression contains the
same samples with y,(m, n); thus, y rearranging its entries,
we can write

input o subband signal #1 .
——> analysis 4
signal 4 ) subband signal #2
# quantizer + channel .-
bask fiter design | ftorinformation

il

synthesis
decoder signal
bank

filter taps
look-up

table

Fig. 3. Subband coder-decoder implementing optimal filter design.

Ya(m, n) is given by (4.14) and E is a unitary permutation
matrix. Note that (4.15) is a spe01a1 case of (4.17) with
F = FrT ® FcT

When additive subband noise has been added to y;;(m, n),
Ya(m,n) in (4.13) and (4.17) should be replaced by
za(m, n) = ya(mn) + vo(m, n) where v,(m, n) is defined
similarly to y,(m, n). Then, reconstruction (4.18) transforms
to

x(m, n) = Fig(m, n) (4.19)
with Z,(m, n) 2 vec {za(m, n)}. Equation (4.19) is of the
same form as (2.24), hence. following the samie steps we
conclude that for fixed decimators H”, H¢ the optimal in the

mean-squared-error sense interpolator is given by

Fopr = RZL R:z (4.20)

where Rz, 2 E{za(m, n)zq(m, n)T} and Rz ; 2

E{z,(m, n)x(m, n)T}. In general, the RHS of (4.20) yields
some F,p;, Which is not a “perfect” Kronecker product.
Thus, in general, optimal 2-D interpolators have not separable
transfer functions, i.e., Fopt cannot be split into some F7 Q;I,t,
Folipe such that Fopy = FI7 @ FCT, . In practice this can
be checked out by estimating F,,; and by using Lemma 4.1.
As in the matrix approach, suboptimal separable filters can be
obtained by computing F; 7 ., F¢T , via the singular vectors
of Lernma 4.1 that correspond to the largest singular value.

V. AN APPLICATION

The improvement in the quality of the reconstructed signal,
obtained through the proposed optimal synthesis filter design,
is of great interest in coding applications for transmission and
storage of 1-D signals and 2-D images. The signal-to-noise
ratio (SNR) increase in the output, without a corresponding

x(m, n) = Fvec {ya(m? n)} @17
where
F =
[F(0,0) F(1,0) --- F(g,0) ---
F(O: Qr) F(17 QT) F(qm QT)]E v
4.18)
f00(2m, 271,) fm(?m, 27‘&)

f00(2m - 1, ZTL)

F(m, n) = foo(2m, 2n — 1)

f10(2m — 1, 27’L)
fi0(2m, 2n — 1)

f01 (2'm, 27’),)
f01(2m - 1, 271)
f01(2m, 2n — 1)

f11(2m, 2n)
f11(2m —1,2n)
f11(2m, 2n — 1)

foo2m—1,2n=1) fio(2m-1,2n—1) fou(2m—1,2n—1) fi1(2m—1,2n—1)
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Fig. 4. (a) Reconstruction mean squared error versus additive noise

level—stationary 1-D signal, stationary additive noise, optimal filters designed
based on theoretically computed statistics; (b) reconstruction mean squared
error versus additive noise level—stationary 1-D signal, stationary additive
noise, optimal filters designed based on estimated statistics.

bit rate overload, is perhaps the most important contribution
of the proposed filter design algorithms. On-line determination
of the optimal synthesis filter banks in variable bit rate coding
situations is also of particular interest.

The structure and the associated flow of data/information
in a subband coding/transmission system that exploits the
above tools is depicted in Fig. 3. The original input signal
is analyzed in, say, P = 2 subband sequences. Next, the
two subband signals are quantized. The quantizer proceeds
to the determination of the number of quantization levels
based on channel load information, i.e., it performs coarser or
finer quantization according to the available channel capacity
at each time point. Both the quantized and the quantization-
free subband signals are fed to the next stage (“coder + filter
design” in Fig. 3), which implements the design task. Since this
stage has access to both signals, it can estimate the covariance
matrices that are necessary for the optimal filter design. As an
alternative, the recursive algorithm of Table I can be used to
adaptively compute the optimal filter taps.

In the sequel, the quantized subband signals along with

information regarding the structure of the optimal synthesis

45 . —— .
35k \ooin.. S0lid line: conventional pecfect reconstruction filter bank |
w30 dashed line: proposed filterbank . ... .. .} .

7] : :

g\

3 : ‘ ' : :

g o 1) R e . . SO P
F 1) IR 8 ]
st
ol .

2 4 6 8 10 2 4 16

# of quantization levels

Fig. 5. Reconstruction mean squared error versus number of quantization
levels: 1-D nonstationary signal, quantization noise, optimal filter-design based
on estimated statistics.

filter bank are coded and transmitted through the channel.
Coder operation is errorless. Consequently, assuming a lossless
channel, the decoder’s output will consist of exact duplicates of
the quantized subband signals and optimal filter information.
Synthesis bank uses the available optimal filter information
in order to adjust the impulse responses of the reconstruction

~ filters. This information could be either an explicit description

of the optimal impulse responses or a pointer to a lookup
table that is accessible from the synthesis bank and contains a
variety of possible impulse responses for the synthesis filters.
The latter. choice consists of a suboptimal solution but is more
economical, since it does not require transmission of the entire
impulse response.

1t is important to note that the aforementioned overhead can
be eliminated using a quite different approach, the design of
optimal analysis filters for fixed synthesis banks; the corre-
sponding procedure is more complicated, since the spectral
characteristics of the quantization noise may rely heavily on
the choice of analysis filters. In this case, a joint design
of optimal analysis filters and associated quantizers seems
natural.

The above scheme describes the simplest possible sub-
band transmission structure employing the proposed design
methods. In practice, for example, in moving picture coding
applications, more complex structures should be incorporated
(e.g., including motion compensators). The main structure
regarding the filter design procedure, however, remains un-
affected. ,

In the case of compression methods based on subband
coding, we can employ almost the same flow of information. In
this scenario the compression program computes the optimal
reconstruction filter banks and stores their impulse responses
in the header of the file that contains the compressed signal in
order to be accessible to the decompression program.

VI. SIMULATIONS

In this section we present a series of simulated examples
in order to illustrate the advantages of using the proposed
optimal reconstruction filter over the conventional “perfect
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reconstruction” ones. The design procedure is tested in noisy
environments both on stochastic and deterministic signals of
one and two dimensions. We compare the performance of the
proposed filters versus that of optimal reconstruction filters
when both are used to reconstruct signals based on their noisy
subband components at various SNR levels.

In experiments 1 and 3 the noise was generated by a
pseudorandom external source and the SNR was common
to both subbands. Experiments 2 and 4 refer to quantization
noise produced by a simple uniform quantizer; the number
of quantization levels varied between successive experiments,
but was the same for both channels.

In all examples, we used as a starting point the quadrature
miror filters (QMFE’s) corresponding to the lowpass FIR filter
of length 8 .

h(n) =[0.0094 —0.0707 0.0694 0.4900
0.4900 0.0694 —0.0707 0.0094]

which was proposed in [6, Appendix 7.1, pp. 401-404].
The impulse responses of the analysis band were given by
ho(n) = h(n), hy(n) = (~1)"h(n) while the correspond-
ing. conventional synthesis filters were fo(n) = 2h(n) and
fi(n) = —2(~1)"h(n).

Experiment 1—Stationary Stochastic Signal Stationary Ex-
ternal Noise: The input signal z(n) was an ARMA process
created by exciting the system

1+0327 404272 — 05273+ 0.6274 ~ 0.7275
1-0.252"1+0.3272 ~ 0.523
by zero-mean white driving noise. Realizations of length
N'= 1000 of the signal were decimated via ho(n), hi(m)
generating the signals yo(n), y1(n) in accordance to (2.2) with
P = 2. Noise signals vy(n) and v1(n) were also zero-mean
ARMA processes generated by the systems
1407271 - 07272404273 — 0.5274 4+ 0.627% — 0.7276
1405271 —0.3272

and

1403271 -0.42"24052"34+0.827% - 0.82~5 — 0.6z
1-0.252"14+0.52-2

respectively. For optimal filter design, we used both the matrix
and the multichannel approaches.

* Case la: The theoretical expressions of the matrices R, ,_,
R..,and R, ;, R,, were initially employed in order to obtain
solutions for (3.4) and (3.7). The designed optimal synthesis
filters were subsequently used for the reconstruction of the
original signals based on their noisy subband components
zo(n) = yo(n) + vo(n) and z1(n) = y1(n) + vi(n). Fig. 4(a)
depicts the mean-squared reconstruction error ((+ standard
deviation) as approximated using 100 Monte Carlo iterations
versus the ratio of signal’s power over noise’s power. The level
of noise was the same in both channels. The solid line corre-
sponds to the use of conventional perfect reconstruction filter
banks, the dashed line corresponds to the filters designed using
(3.7), and the dashed-dotted line represents the reconstruction
error resulting when (3.4) was used for filter design.

onstruction filters

6 solid fine: convetional peifect
dashed line:prog

rsed sub-optimalirece fon filters

reconstruction MSE

[ 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05

SNR level
Fig. 6. Reconstruction mean squared error versus additive noise level:

stationary 2-D signal, stationary additive noise, filter design based on estimated
statistics.

Case 1b: Instead of the true values of R, . and R, ,,
we used their estimates R, , hat and f%zaz. The previous
experiment (100 Monte Carlo iterations) was repeated for
filters designed on the basis of the multichannel approach [i.e.,
(3.7)]. In the diagram of Fig. 4(b) we show the performance
of the conventional and proposed filter banks (obtained using
the multichannel approach) for various noise levels. Again, the
solid line corresponds to the conventional filters and the dashed
line refers to the reconstruction capability of the proposed
filters. :

Experiment 2—Deterministic Input Signal Quantization
Noise: We generated a single deterministic input signal z(n)
of length N = 1000, scanning row-by-row a gray-scale image
created by a scanner device from a printed real image. We used
the analysis filters ho(n), h1(n) of the previous experiment
in order to obtain two subband components of z(n). Both
subband signals were quantized via a uniform quantizer. Their
quantized versions were then fed to the interpolation filter
banks corresponding te the conventional perfect reconstruction
filters .and to the proposed (multichannel approach) optimal
reconstruction filters of (3.7). The autocovariance structures
R.,. and R. ., in (3.7) were estimated using standard
autocovariance estimators. The resulting reconstruction MSE’s
for both filter banks is plotted in Fig. 5 versus the varying
number of adopted quantization levels. It should be noted that
the impulse responses of the optimal synthesis banks were
recalculated for all different numbers of quantization levels,
since any change of this number would result in a change of
the autocovariance matrices R,_,, and R, ..

Experiment 3—Stationary Stochastic 2-D Signal (Texture)
Stationary External Noise: The 2-D input signal z(m, n) was
an MA process created by convolving an uncorrelated signal
u(m, n) with the mask

-0.5
o |

1
b= [—0.2
Realizations of size 128 x 128 of x(m, n) were decimated v
using separable analysis filters with

6(n) =hg(n) = ho(n)
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(a)

(d)
Fig. 7.

©

®

(a) Original image of Experiment 4; (b) reconstruction SNR versus number of quantization levels: 2-D real-life signal, quantization subband noise,

filter design based on estimated statistics; (c) image reconstructed via conventional filters; Subband images uniformly quantized into two levels; (d) image
reconstructed via optimally designed filters (subband images uniformly quantized into two levels); (e) image reconstructed via conventional filters (subband
images uniformly quantized into four levels; (f) image reconstructed via optimally designed filters (subband images uniformly quantized into four levels.

hi(n) =hi(n) = hy(n).
In the case of perfect reconstruction filter banks, we used the
corresponding synthesis filters

White additive subband noise at various SNR levels was added
to all four subband images. After estimating the autocovari-
ance statistics of signal and noise, we used the proposed
multichannel approach (cf., (4.20)) to design the optimal
reconstruction filters. The resulting optimal 2-D interpolators
were nonseparable; we next used Lemma 4.1 to approximate
them by suboptimal separable ones. Fig. 6 illustrates the
performance (mean =+ st. dev. of 100 Monte Carlo runs) of
the conventional (solid line) and the proposed separable filters
(dashed line). In the diagram, the resulting reconstruction MSE
is plotted versus the level of additive noise.

Experiment 4—2-D Signal Quantization Noise: The 256 X
256 real-life image of Fig. 7(a) was used here in the form of
a 2-D input signal. We used the same analysis filters that we
used in Experiment 3. All four subband signals were uniformly
quantized in different numbers of quantization levels. Signal
and noise statistics were estimated and used for the design
of optimal reconstruction filters according to (4.20) of the
proposed multichannel approach. The optimal reconstruction

impulse responses were not separable. In Fig. 7(b), we illus-
trate the achieved reconstruction SNR for the conventional
perfect reconstruction synthesis filters (corresponding to the
particular analysis bank; see Experiment 3) and the computed
optimal synthesis filter bank versus the number of quantization
levels. Fig. 7(c) and (d) depict the reconstructed images
when using conventional and optimal reconstruction filter
banks, respectively. Although the uniform quantization of the
subband signals was extremely coarse (two quantization levels,
i.e., .1 b/pixel), the optimally reconstructed image, contrary
to the conventionally reconstructed one, preserves the main

“structure and texture of the original picture. Fig. 7(e) and (f)

depicts similar results obtained after using a four-level uniform
quantizer (2 b/pixel).

VII. CONCLUSIONS

In this' paper, we examined the effect of additive noise
in subband processing applications and propose optimal re-
construction filter design methods. These optimal filters are
designed on the basis of input signal and noise statistics and
minimize the MSE between the original and the reconstructed
signal. We have shown that the proposed design technique
can be recursively implemented in a way that allows tracking
of slow variations of signal and noise spectral characteristics.
Both the analysis and the design are extended to the 2-D
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signal (images) case, which is accomplished with the use of
Kronecker products, ‘

The proposed techniques can be used in the subband coding
of 1-D signals and images, resulting in improved quality
of reconstructed signals without corresponding cost in terms
of bit rate or storage space.” The overhead required for the
coding of the optimal filters is negligible when the underlying
signals are stationary or piecewise stationary; in this case, the
filter coefficients should be coded once or only a few times.
In the case of nonstationary signals, an appropriate vector
quantization is proposed for the indexing of the filter space;
additional research work is currently in progress regarding this
topic.

Using synthetic and real data, we performed a set of
simulation experiments that illustrated the superiority of the
proposed optimal synthesis filters against the conventionally
used perfect reconstruction filters.
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