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SUMMARY 
Conventional parameter estimation approaches fail to identify linear systems operating in closed loop 
when both input and output measurements are contaminated by additive noise of unknown (cross- 
)spectral characteristics. However, even in the absence of measurement noise, parameter estimation is 
involved owing to the additive system noise entering the loop. The present work introduces a novel 
criterion which is theoretically insensitive to a class of disturbances and yields the same parameter 
estimates that one obtains using mean squared error (MSE) minimization in the absence of noise. A 
strongly convergent sample-based approximation of the proposed criterion is introduced for consistent 
parameter estimation in practice. It is also shown that in the common case of ARMA modelling the 
resulting parameter estimates coincide with those obtained from a set of linear equations which can be 
solved using a time-recursive algorithm. Simulation results are presented to verify the performance of the 
proposed schemes in low-signal-to-noise-ratio environments. 

KEY WORDS closed loop systems; system identification; parameter estimation; recursive estimation; 
statistics (cumulants) 

1. INTRODUCTION 

The operation of systems under feedback control is either a necessary engineering solution in 
order to stabilize the overall plant or in other cases a modelling scheme for more accurate 
description of the system dynamics. The first category includes industrial plants for the 
production of paper, cement and glass as well as navigation systems for ships and aircraft. The 
second category refers to physical, biological and economic systems. 

In the present study we adopt the closed loop model referring indistinguishably to all the 
above systems and develop a parametric identification method for determining the open loop 
system even when disturbances of a certain class enter the loop and corrupt the input/output 
data. We examine the closed loop system depicted in Figure 1 assuming that the processes w ( t )  
and z ( r )  are measurable and that H , ( z )  can be parametrized by a vector 8 whose value is to be 
estimated. 
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Figure 1 .  

An excellent review of existing identification methods that apply to closed loop systems can 
be found in Reference 1 (see also Reference 2). The observed processes in Reference 1 are 
assumed noise-free, i.e. w ( t )  = u ( t )  and z ( r )  = y ( t ) .  Although this restriction simplifies the 
problem significantly, it is known that 

(i) (non-)parametric power spectral techniques do not provide unbiased estimates of H , ( z )  
(ii) parametric techniques that employ minimization of prediction errors allow consistent 

In Reference 3 a non-parametric closed loop identification approach relied upon higher- 
than-second-order spectra in order to provide unbiased and consistent estimates of the open 
loop transfer function H,(z ) .  Open loop identification with noisy input/output data (also 
known as errors-in-variables modelling (Reference 4, p. 203)) is a special case of the closed 
loop scenario and algorithms relying on higher-order statistics (HOS) have been reported in 
References 5-10. Akaike" was the first to report on the use of HOS for identification of 
closed loop systems. 

The parametric and criterion-based method derived herein exploits the theoretical insensitivity 
of higher-than-second-order cumulants to certain kinds of additive noise in order to circumvent 
the effects of v,(t) ,  v,,(t), and v,(t) for the model of Figure 1. We essentially extend the 
input/output technique reported in References 6-8 to closed loop environments. The generalized 
prediction error (GPE) method that we propose turns out to be computationally attractive when 
H , ( z )  is modelled as a rational transfer function, since it reduces to solving a set of linear 
equations. In addition, a time-recursive RLS-type algorithm is delineated for solving the 
aforementioned equations. 

Strong consistency of the parameter estimates is also presented. The identifiability and 
persistence-of-excitation conditions are no different from those encountered in the existing 
analysis (see e.g. References 1 and 8) and we will not repeat them here. 

estimates of the underlying parameters but require non-linear optimization. 
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The rest of the paper is organized as follows. In Section 2 we describe the exact structure of 
the overall system and set the assumptions on the nature of the signals involved. Section 3 deals 
with a new noise-insensitive loss function vB, which replaces in our method the conventional 
mean squared error V,. A sample-based counterpart vhN) of vB is also introduced and its 
convergence to v, w.p.1 and uniformly in t9 as the number of samples N + -  is proved. 
Consistency of the parameter estimator ON arg extremum v)," is also established. In Section 
4, the interesting case of ARMA modelling is examined and an appropriate recursive, 
pseudoadaptive algorithm for computing ON is outlined. Section 5 contains simulation results 
verifying the theoretical assessments of the previous section. 

2. PROBLEM STATEMENT 

In this section we define the structure of the system that we intend to identify and state the 
assumptions on the system and the signals involved. Figure 1 depicts the entire configuration. 
Denoting by 9-I the unit-delay operator, the above closed loop operation is summarized by the 
equations 

Y ( t )  = H,(q)u(t)  + v,(t) 

4 0  = H f ( d Y ( t )  + V f O )  

( la)  

(1b) 

(2) N t )  = u ( t )  + V L , ( f ) ,  z ( t )  = Y ( t> + V, ( t )  

where all involved signals are scalar and all filters are single-input/single-output (SISO). 
Combining ( la)  and (lb), we obtain direct expressions for u ( t )  and y ( t )  provided that 

F(cl)" r1 - H,(dHf(S)I - I  

is stable; specifically, it follows readily that 

V,(t) = 40) + us(0 ( 3 4  
1 H, (4) 

1 -Hs(q)H/(Lir) 1 - Mz)H,- (d  
u(t) = VfUf(0 + 

Here u f ( t ) ,  y,-(t) and u,(t), y,(t)  are obviously the components of u(t)  and y ( t )  that depend on 
V , ( t )  and v,(t) respectively. The 'f-dependent' components of u ( t )  and y ( t )  form an 
input/output pair 

Y f W  = Hs(4)uf ( t )  (4a ) 

+(t) = F ( d V f ( t )  (4b) 

with 

These last two relations will be exploited later in order to reduce the closed loop identification to 
an input/output identification task (see Section 3). 

We proceed to set working assumptions on the signals and systems. 

(Al) H,( z )  is stable, causal without direct term, i.e. H,(z - I  = 0) = 0. 
(A2) F ( z )  = [l - H,(z)Hf(z)] - I  is stable and F ( 0 )  + F ( z  = ej")l w = o +  0; the latter will be 

necessary in the next section in order to establish an important relation between 8, and 
V B  (see (7) and also (8)). 
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(A3) uf(t) = L(q)vp ( t ) ,  where L ( q )  is a stable filter with L(O)+O and v,,,(t) is a zero-mean, 
i.i.d. process with non-vanishing third-order cumulants, finite moments up to order six 
and y 2  = E (  vh( t ) } ,  y3 = E {  z$( t ){ .  We refer the reader to Reference 1, Chap. 2 for 
definitions and properties of cumulants. 

(A4) v, ( t )  is a zero-mean, symmetrically distributed, possibly coloured process independent 

(A5) Measurement noises v,,( t )  and v,( t )  are zero-mean, symmetrically distributed with 

Assumption (Al) and the stability of F ( z )  in (A2) are standard (Reference 1, p. 383), while 
(A3)-(A5) define the class of disturbances that can be tolerated when third-order cumulants are 
used. They are satisfied for example when the PDF of v,(t) is skewed and { u,( t ) ,  v l , ( t ) ,v , ( t ) )  
are Gaussian and independent of v,( t ) .  However, if higher-than-third-order cumulants are 
employed, the condition F(O)+O can be dropped and we then require (v , ( t ) ,  v,,(t), v,( t)]  to 
have vanishing kth-order cumulant, while it suffices for v,(t) to have non-vanishing cumulant 
of the same order k < 3. 

of v,(t). 

unknown (cross-)power spectra independent of v,( t) .  

3. THE CRITERION AND ITS SAMPLE ESTIMATE 

In this section we propose direct identijcation of H,(z)  using a novel generalized prediction 
error method. When using the conventional MSE criterion, one faces two major problems in the 
identification procedure. 

(i) 1 /0  noises v , ( t )  and v,(t) of unknown colour introduce unknown biases in the estimates 
of H,(z ) .  Essentially this happens because the MSE is sensitive to any kind of additive 
disturbances. 

(ii) Even when vll(r) = v,(t)eO, i.e. u( t )  and y ( t )  are directly accessible, the presence of 
v, ( r )  makes it necessary to employ a non-linear and/or iterative minimization procedure 
(see Reference 4, Chap. 10). 

The proposed loss function exploits the theoretical insensitivity of third-order cumulants to 
additive noise with symmetric PDFs (see e.g. References 9 and 12) in order to overcome (i) and 
(ii) above. 

Definition 1 

For the structure of Figure 1 we define 
ca 

where 

E,,,,Z,e(t> 4 D I , e ( q > W ( t >  + D2.e(q)z(r) (6) 
is a generalized prediction error expressed as a linear combination of lags of w(t) and z(r). The FIR 
filters D, . , (q )  and D,,,(q) are parametrized by 0 and determine the structure of the predictor. They 
are also in one-to-one correspondence with the adopted model H , , o ( ~ )  that is to be fitted to the true 
system H,(z)  (see also Reference 4, p. 169 for details on the parametrization of a model set). 

Criterion Ve of (5 )  will turn out to be theoretically insensitive to noise satisfying (A3)-(A5) 
and was originally introduced for input/output identification purposes in Reference 8 and earlier 
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for output-only identification in Reference 7. In this paper we extend its use to closed loop 
system identification; we prove that its major properties remain unaffected by the existence of 
the feedback loop. The following theorem establishes the equivalence of 8, to the conventional 
MSE when the latter is computed in the absence of disturbances v,,(t), v,(t) and v,(t). 

Theorem 1 

If assumptions (A1)- (A5) hold and the generalized prediction error filters are, uniformly in 
8, bounded and absolutely summable, then 

V e =  a V ,  (7) 

where V,e  E { ~ i ~ , , ~ , , ( t ) }  and a + ( y3 /y2 )F(0 )L(O) .  

Proof. Starting with (2) and (6 ) ,  we first observe that 

El w ( t  + k>&,2,.I.e(t)I = E{  u ( t  + k)&:.,,,wI 

since { v,,(t), v,(t), v,(t))  are independent of [ v,(t)) and, owing to (A4) and (A5), they have 
vanishing (cross-)third-order cumulants. Similarly, using the decomposition of (3a,b) and the 
fact that v,(t) is independent of vf(t) and has zero third-order cumulant, we find 

E {  u ( t +  k ) E t , ) , , ( t ) I  = E (  + k ) E : J . Y f . e ( t ) )  

where ~, ,~, , , ( t )  D l , , ( q ) u f ( t )  + D2,,(q),(t). Exploiting next the input/output relation (4a), the 
fact that uf(t) = F(q)L(q )v f l ( t )  and using Theorem 3.1 of Reference 8, we conclude that 

Y3 

) ( 5 - 0 9  Y2 
2 E {  w(t + k)E:,Z~o(t) I = - F ( ~ ) L ( ~ ) E {  &:.Ype(t) I 

which completes the proof. 

According to (7) and since (A2) and (A3) guarantee Q # 0, it follows that the conventional MSE 
V ,  can be obtained from Ve within a scalar ambiguity. Although the sign of a is not known, 
Theorem 1 implies that extremization of is equivalent to minimization of V ,  w.r.t. 8: 

e, arg extremum 7, = arg min V ,  (8) 
Since the latter involves only u f ( t )  and yf(t), which are related through the noise-free 
input/output relation (4a), estimates of 8 obtained via (8) will be valid estimates of the true 
parameters of H,(z).  

Following Reference 8, Ve of ( 5 )  can be generalized to cost functions Vk, ,  which are 
(modulated) projections of higher-than-third-order cumulants. Specifically, under (Al), (A2), 
vlO(r) being non-Gaussian with finite moments and vs(r), v,,(t) and v,(t) Gaussian and 
independent of vfo(t), it follows from Lemma 4 of Appendix I1 that 

Cost function v, is a special case of (9) with k =  3. If k is even with w 2 i + l  = wg and 
w 2 , =  -w0, we find: vk,e= (Yk/YZ)IF(oo)L(wo)I '-'V,. Since v,(t) was assumed non- 
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Gaussian, y k + O  for at least one kb3 .  Also, F(wo)L(wo)+O for at least one w o E  (-n, n] . 
In practice k = 3 or 4 will be adequate in most cases. For brevity we restrict ourselves to 
k = 3 .  

So far we have shown that under (Al)-(A5) the loss function 9, is a noise-insensitive 
'metric' for parameter identification of systems operating under feedback control. In practice, 
however, Ve cannot be computed since it involves expectations and infinite sums. In the sequel 
we define a sample-based approximation of Ve, namely V',"', and prove its strong convergence 
to ve uniformly in 8 as the length of the data record N + =. 

Definition 2 

continuous window A( 1 )  defined on [ - 1,1]  which obeys the restrictions 
Let ~ , ~ , ~ , ~ ( t )  be defined as in (6). Let also A * ( k ) k i l ( k / M )  be a discrete version of the 

(Rl) M = 0(N"(4'6)), 6 > 0 
(R2) A(0) = 1, 

1 - A ( t )  
(R3) lim ~ = L  < = 

1-90 t 2  

A( - t )  = A(t) 

Then define 

Comparing Definitions 1 and 2, two comments are in order: first, expectation in the definition of' 
Ve has been replaced by time averaging; second, infinite summation over k has been replaced by 
a weighted sum over all available samples. It turns out that 'windowing' by A " ( k ) ,  constrained 
by (Rl)-(R4), makes VLN) a consistent estimator of v,. 

The asymptotic behaviour of viN) is formally described by the following theorem. 

Theorem 2 

Let V e  be defined by ( 5 )  and vLN) be as in (1 1). If (Al)-(A5) hold and 

t - - N  

then 

(a) S U ~ I P ~ " - ~ ( ~ I + O  w.p.1 asN+m 

(b) s;p I % ( " - v O I + O  asN-+= 

(c) sup 1%'"- POl-+O w.p.1 a sN+= 

0 

e 
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N N  

sup c x l * ( k ) [ x , ( t  + k)y,(t)z,(t) - E{x,(t + k)y,(t)zo(t))] ' N k = - N r = O  

Proof. Before proceeding to the proof of (13), we quote a lemma that will be used in the 
proof. 

+O w.p.1 a s N + =  (15) 

Lemma 1 

Let X e ( t ) ,  Y e ( [ )  and z e ( t )  be linear processes such that 

and 

(ii) e,( t ) .  e , ( t )  and e , ( t )  are i.i.d. with finite moments 
(iii) ;Z"(k) obeys (Rl)-(R4) 
(iv) (a) e,(r) independent of {e, ( t ) ,  e , ( t ) ]  or (b) there exist t ,  and t ,  such that 

e,( t )  = e,(t - t l )  = e l ( t  - t 2 )  = e ( t ) .  

Then 

Proof. See Appendix I. 

(a) According to (2) and (3a, b), we have w ( t )  = uf(t) + u,(r) + v,,(t) and 

(16) 
Based on (16), we split vhN) into two parts, namely one that involves q ( t )  and y f ( t )  only and a 
second one that also includes the noise processes v,,(t), vy(t) and v,(t): 

We now return now to the proof of Theorem 2. 

z ( t )  = yf( t )  + y ,  ( t )  + v, ( t ) .  Hence 

E , v , z , e ( t ) =  ~ , , ~ , , ~ , e ( t )  + Di,e(q)[U,(f) + v,,(t)l+ D2,e (4 ) [yS( t )  + v,(t)l 

- (N) 1 "  1 "  
V, = - c x I * ( k ) z + ( t  + k)~&,( t )  + - c A*@) (triple cross-product terms) (17) 

N I=-N t-0 I;--N 1-0  
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Clearly the above processes fulfil the conditions of Lemma 1. Hence for each of the three terms 
of (18a) and therefore, owing to the triangular inequality, for their sum the assertion of the 
lemma holds, i.e. 

On the other hand, all processes involved in the second part of (17) fulfil the requirements of 
Lemma 1 and, owing to (A4) and (AS), all triple products have expected values equal to zero. 
Hence, applying Lemma 1 again we conclude that the second term of (17) tends w.p.1 and 
uniformly in 6 to zero as N + 00. 

In view of (7) and (13b), this completes the proof of part (a) of the theorem. 
(b) Part (b) can be established by following exactly the same arguments we used in 

(c) Equation (13c) is a direct consequence of (13a) and (13b). 

The uniform-in-8 convergence implied by Theorem 2 makes it possible to identify the 
parameters of H , ( z )  based on the noisy measurements w ( t )  and z ( t ) .  The following corollary to 
the theorem formalizes this claim. 

Reference 7, Appendix C .  

Corollary 

Under the assumptions of Theorem 2 and if 
6 ,  arg extremum Vl;"' 
6, arg min V ,  

then 

8,-+6, w.p.1 as N + =  (19c) 
The corollary suggests a non-linear method for estimating 6, by extremizing vhN). 

Convergence in (19c) should be interpreted in the sense of Reference 4, p. 215, which allows ii 
set of extrema rather than a single global extremum. In addition, as we see next, the non-linear 
optimization can be reduced to solving linear equations when the assumed model is ARMA. 

4. ARMA MODELLING 

In many applications the transfer function H,(z )  is approximated by an ARMA(P, Q) model. In 
this case the parameter vector 6 includes the coefficients of the numerator and denominator 
polynomials and the generalized prediction error becomes 

(28) E,",L.B(t) = z ( t )  - x T W  

x(t)P[z( t - ' l ) ,  z ( t - 2 1 ,  ..., z ( t - ~ > ,  w ( t -  I), w( t -21 ,  ..., w ( t - ~ > ) ~  

where the augmented data vector x ( t )  is defined as 

(21) 
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Substituting (20) and (21) into (9, we obtain 

The extremizer 8, is then the solution of the normal equations 

Following similar steps, we conclude that the data-based estimate eN of 8 is the solution of the 
normal equations 

@(N)ON = + ( N )  (24) 
where 

1 - 0  

t = O  

with 

I .=+ 

The linear equations (24) accept a time-recursive solution similar to the recursive least 
squares (RLS) algorithm. The corresponding pseudoadaptive algorithm which is summarized 
in Table I is capable of tracking slow variations in H,( z )  owing to the forgetting factor p that 

Table I. The proposed recursive algorithm 

Initialization: batch estimation of P(N,) = @ ( N o )  - '  
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has been included. Note also that computing <,,(t) at every t requires nothing but a tap delay 
line. 

V. SIMULATIONS 

Simulated examples were used to verify the performance of the proposed identification scheme 
and to compare it with the performance of the conventional MSE-based method. A hundred 
Monte Carlo runs were performed in each experiment in order to approximate the mean value 
and standard deviation of the parameter estimates. In the following test cases the closed loop 
environment of Figure 1 was implemented using Matlab 4.0 on a SPARC station IPX. 

Experiment 1 

function 
In the first experiment the direct branch system was chosen to be ARMA(2,l) with transfer 

while the feedback transfer function was the AR(2) system 

1 
1 + 0.3z-I - 0 . 2 ~ ~ ~  

H ~ z )  = 

The input uf( t )  was white, zero-mean, exponentially distributed with distribution parameter 
3, = 1.0. The system noise u,( t )  was generated by passing white, zero-mean Gaussian noise 
through an FIR filter with taps [ l ,  -2.33,0.75,0.5,0-3, -1.41, while the measurement 
disturbances u,, ( t )  and v,(t) were zero-mean, normally distributed and mutually correlated 
through 

V , ( t ) =  vt,(t)+O.2v,,(t- 1 ) - 0 . 3 ~ , , ( t - 2 ) + 0 * 4 ~ , , ( t - 3 )  

with noise v, , ( t )  being white. In this experiment we set SNR,P 10 log,,[E( v : ( t ) ) /E (  vT(t))] to 
5 dB, SNR,,e  10 loglo[E(u2(t))/E{ v%(t))l  to 5 dB and SNR,& 10 loglo[E{y2(t))/E( u:. ( t ) ) ]  
also to 5 dB. The length of the data records was N = 4000 points. The discrete window A * ( k )  
was a 25-point Hamming window. The first row of Table I1 contains the true ARMA 
parameters. The Monte Carlo mean i standard deviation of the estimates obtained by solving 

Table II. ARMA closed loop identification (Experiment 1) 

True 0~000 0.500 -0.400 0.500 

Proposed -0.014 0.5 13 -0.414 0.522 
estimates +0.096 k0.079 k0.154 +O. 172 

Conventional 0.370 0.278 0.02 1 0.146 
estimates *0.004 *0*007 *0.012 k0.009 
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the normal equations (24) and (25) are in the second row of the same table, while the 
estimates obtained by solving the autocorrelation-based normal equations are in the third row 
of the same table. Figures 2(a) and 2(b) depict the true (full curve) and estimated transfer 
functions of H , ( z )  (mean value only). In accordance with our theoretical assertions, the 
proposed estimates have converged to the true parameter values; a rather small bias is the 
result of using Monte Carlo mean instead of ideal expectations and also due to the use of a 
finite length window L*(k) instead of one with increasing support M ( N )  +- (refer to 
restriction (Rl),  equation (10)). 

Experiment 2 

In the second experiment we used as direct branch system the ARMA( 1 , l )  transfer function 

while the remaining signals and systems involved were the same as in Experiment 1. We 
changed the SNR levels to SNR, = 5 dB, SNR,, = 3 dB and SNR, = 3 dB. The length of the 
data records was in this case N = 2000 points. Table I11 contains the corresponding Monte 
Carlo mean f standard deviation estimates obtained by solving (24) and (25) in the case of 
the proposed ones and the conventional normal equations in the second and third rows 
respectively. Figures 3(a) and 3(b) depict the true and estimated (Monte Carlo mean) 
transfer functions of H , ( z )  . The conventions regarding the curve-types are as in 
Experiment 1. 

(a) 

-3.5- 
0 1 2 3 4 

frequency (rads) 

Figure 2. Experiment 1: (a) True and estimated (mean) transfer function amplitude; (b) true and estimated (mean) 
transfer function phase 
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Table UI. ARMA closed loop identification (Experiment 2) 

Coefficient b" b, a,  

True 0.000 0.500 0.500 

Proposed -0.014 0.5 11 0.505 
estimates k0.052 rt0.044 *0.111 

Conventional 0.290 0.424 -0.454 
estimates *0.010 rt0.013 rt0.014 

N = 2000,100 MC runs, SNR,  = 3 dB, SNR,  = 3 dB, SNR, = 3 dB. 

-3s0 L 2 3 
1 
frequency (rads) 

Figure 3. Experiment 2: (a) True and estimated (mean) transfer function amplitude; (b)true and estimated (mean) 
transfer function phase 

6. CONCLUSIONS 

Conventional identification techniques fail to provide unbiased estimates of systems operating 
in closed loop when the input and output measurements are contaminated by additive noises of 
unknown covariance. This is due to the well-known sensitivity of power spectra and second- 
order correlations to all kinds of additive noise. In addition, even in the absence o f  
measurement noise identification of such systems requires iterative minimization and non-linear 
programming when system noise v, ( t )  enters the loop. 

In this paper we introduced a parametric, time domain method for identification of LTI 
systems operating under feedback which is theoretically insensitive to a class of noises. The 
proposed identification approach is based on the extremization of a loss function vo that is 
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theoretically tolerant to all symmetrically distributed system and measurement disturbances 
v,(t), v,,(t) and v,(t) .  The aforementioned insensitivity results from the dependence of V ,  
purely on third-order cumulants of the input/output signals. 

We showed that when both input and output records are contaminated by non-skewed 
noises, possibly coloured and even mutually correlated and also correlated to the system 
noise, the proposed loss function is equivalent to the conventional MSE when the latter is 
expressed in terms of the noise-free input and output of the system H,(z ) .  Intuitively 
speaking, our kth-order (cross-)cumulant-based criterion separates disturbances from 
information signals on the basis of their distributional characteristics such as skewness 
( k  = 3) and kurtosis ( k  = 4). 

A sample estimate of the above criterion was established to be convergent strongly and 
uniformly in 6 to the theoretical value of the criterion. As a corollary, practical and strongly 
consistent estimation of the parameters was guaranteed. 

In particular, when the unknown transfer function is modelled as rational, the necessary 
extremization is attained by the solution of a system of linear equations. A time-recursive, 
pseudoadaptive algorithm similar to RLS was presented to implement the aforementioned 
solution. 

Simulated experiments were used to verify the performance of the proposed technique in 
noisy closed loop environments. 
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APPENDIX I: PROOF OF LEMMA 1 

The proof of Lemma 1 is based upon two lemmas which deal with bounds and convergence of stochastic 
sums. The proofs of these lemmas can be found in Reference 7 (see also Reference 4). 

Lernrna 2 
Let @ = z;-- a ( k ) z ( k ) ,  where ( i )  a ( k )  is a deterministic sequence satisfying z7-.. la(k)l s C, and 

(ii) z ( k )  is a sequence of random variables such that E ( z 2 ( k ) ]  s C : .  Then 
E ( @ 2 1  cc,[z;,, l a ( k ) l 1 2 ~ C r C t .  

Lernrna 3 

Let [ X,) be a sequence of zero-mean random variables and define Y:+ zy=,t, X , ,  OG r s  N .  If 
E (  (Y: )2 )  s C M 2 ( N ) ( N - r ) ,  where M ( N ) G O ( N ' " ~ ' ~ ) ) ,  6>0, then the sequence N-'lYtl + O  w.p.1 as 
N + - .  

We now proceed with the proof of Lemma 1. Define 

I - - N  I I I 

x [e,(t + k - i)e,(t - j ]e , ( t  - r) - El e,(t + k - i)e,(t -I?e>(t - l ) ] ]  
1 - r t l  
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We intend to bound E (  IDe(r ,N)12}  in order to use Lemma 2. To this end we first derive bounds for the 
individual deterministic and stochastic time series involved in (26). We first observe that since 

then for N large enough there exists a C, such that 
N 

l i -  -N 

On the other hand, we have bounds for the absolute sums of h.,,(t), h,,(t) and h,@(t) owing to (14d-f). 
We next consider the stochastic term. If 

N 

s(I.,N) 6 1 [ e , ~  + ro)e,(t + ql>e.(t + q2) - Ele.,(t + qo)e,(t + q1)e2(t + q?))~ (28:) 
1 - 1 + 1  

then it holds that 

El Is(r,N)l2) ~ i r i ~ , ~ ~ ( ~ - - r )  (29) 
Indeed we examine two cases corresponding to the alternative assumptions (iv)(a) and (iv)(b). 

If (iv)(b) holds, then 
N 

s(I.,N) = C [e(t + %)e(t + voe(t + 7;) - E (  e(r + qh)e(t + ql)e(t + q;) 11 
I - r + l  

For this sum in,,,,( mi, in,, in.,, m6 - in:), where in, fi E (  e ’ ( t ) )  (see also Reference 7). 
If ,  on the other hand, (iv)(a) holds, then s ( r , N )  =CEr+,  e , ( t+  qo)evy( t+  q , ) e , ( t+  q2), which implies 

ISO.JV Iz = c C ~ ( e . , ( r  + rO)e.,(s + v o ) l ~ ( e , ( r  + ql)ey(S + ql)e2(t + %)e:(s + q2)1 
N N  

1-,+1 ).-,+I 

= 2 E(e,(t + qo)?}E{e,(t + ql)*e2(t + q?)?} 
I*,+] 

= m,,a,(N - 1.) 

with inmax~EE(e2(t))max,,_, E { e , ( r +  7] , ) ’e , ( t+ 7]z)z}. 
Using the triangle inequality, we obtain 

with qo = k - i, q, = - j  and q2 = -1. In view of relations (14d-f) and (29), Lemma 2 yields 

E (  syp 1 Do(r, N) l 2  1 Q ~,~PC,’C,’M’(N - 1.1 

Using (30) and condition (Rl),  Lemma 3 yields 
1 - sup ID,(O,N)I+O w.p.1 a s N + -  
N @  

This completes the proof of Lemma 1. 

APPENDIX I1 
In this appendix we quote as a lemma a useful expression relating multiple modulated projections of 
cumulants to cumulants of lower order. 
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input the i.i.d. process e ( t )  and let Gi( w )  be the corresponding transfer functions. Then  for k > 1 
Let u , ( t )  =C, g,(t - z)e(t.), i =  1, ..., k ,  be a collection of SISO linearprocesses with common driving 

where y Ic  ( y l r )  is the kth-order (lth-order) cumulant of e ( t ) )  provided that cL-’,=l wi = 0. 

Proof. See Lemma A. I of Appendix A in Reference 8. 
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