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ABSTRACT

In this paper, we present an analysis �lter design tech-
nique which optimally de�nes the proper decimator so
that the quantization noise is compensated. The anal-
ysis is based on a distortion criterion minimization us-
ing the Lagrange multipliers. The optimal decimation
�lters are derived through a Ricatti solution which in-
volves both the quantization and the interpolation �l-
ters. Experimental results are presented indicating the
good performance of the proposed technique versus con-
ventional subband �lter banks in the presence of quan-
tization noise.

1 INTRODUCTION

Subband processing, which is concerned with problems
in which more than one signal rates are considered, has
become a topic of extensive research in the recent years.
It is already an important part of a wide variety of ap-
plications, such as audio and speech coding (e.g., the
audio coding part of the MPEG algorithm [5]), progres-
sive image coding and spectrum analysis. This is due to
the fact that it permits the design of e�cient systems
for tuning the associated coding to arbitrary level [11].
Furthermore, the new forthcoming standards which are
currently in progress for multimedia processing and very
low bit rate coding, use techniques and theoretical as-
pects of this �eld for achieving better compression e�-
ciency.

The design of decimation and interpolation �lters
(analysis/synthesis �lter banks) is in the core of mul-
tirate signal processing. Extensive research has been
carried out on the design of decimators/interpolators
that achieve perfect reconstruction [8].

A perfect reconstruction �lter bank reproduces the
input signal exactly in the output. The associated anal-
ysis is based on the assumption that all subband com-
ponents are available to the interpolation bank with in-
�nite precision. However, in real life applications the
aforementioned assumption is not ful�lled. For exam-
ple, when �lter banks are used for signal compression,
a non linear quantization operation is performed in the
subband domain. The quality of the reconstruction in

this case depends on both �lter and quantizer charac-
teristics. In addition, external subband noise is possibly
added to the signal during its transmission usually due
to channel disturbances.

Most of the previously reported works refer to the
design of appropriate compensators that preceding
the synthesis stage suppress the e�ect of the noise
[2,3,4,6,10]. In [9] necessary and su�cient conditions
are described for the optimality of orthonormal perfect
reconstruction �lter banks. Optimal scalar quantization
of the banks together with optimal bit allocation is as-
sumed. An analysis in the frequency domain without
the assumption of orthonormality is also given in [7]. A
method which compensates quantization or any other
type of additive noise by appropriately adjusting the
synthesis �lter bank is proposed in [1].

In this paper we propose a method for the design of
the analysis �lter banks so as to reduce the e�ect of
noise for a given set of synthesis �lters. Our method is
purely developed in the time domain and uses the sta-
tistical average distortion power as a measure of similar-
ity between the original and reconstructed signal. The
advantage of adjusting the analysis bank rather than
the synthesis one is in accordance to common encod-
ing/decoding strategies that tend to pull the complexity
towards the transmitter part of a system.

2 MULTIRATE REPRESENTATION

Subband processing assumes a mechanism that decom-
poses a given signal, say, x(n) into P sequences, where
(P � 2), each of them contains di�erent frequency com-
ponents of the original signal x(n). This is performed
by digital �lters, h0(n); h1(n); � � � ; hP�1(n), called dec-
imators. In particular, the ith subband component is
formed by passing the signal x(n) through hi(n) and
then subsampling by P . Thus, the decimation proce-
dure is described as

yi(n) =
X
k

hi(Pn� k)x(k) (1)

where yi is the output of the ith decimator as it is illus-
trated in Figure 1 in case P = 2.



Figure 1: Decimator and interpolator �lter banks with
quantization noise

To reconstruct the signal x(n) by its subband compo-
nents, an inverse mechanism should be introduced us-
ing the so called f0(n); f1(n); � � � ; fP�1(n) interpolation
�lters. This is performed by inserting P � 1 zeros be-
tween successive samples of the subband signal and then
passing through the aforementioned interpolation �lters.
That is, the reconstructed signal x̂(n) of x(n) can be de-
rived by the following equation

x̂(n) =

P�1X
i=0

X
k

fi(n� Pk)yi(k) (2)

In case that appropriate decimation and interpolation
�lters are used we can guarantee perfect reconstruction
i.e., x(n) = x̂(n). Since equations (1) is of convolution
type, it can be written in a matrix form as follows

yi = Hix (3)

where x = [x(0); � � � ; x(N � 1)]T is a vector contain-
ing the N samples of the input x(n) while yi =
[y(0); � � � ; y(N=2 � 1)]T . The Hi is a matrix the ele-
ments of which correspond to �lter coe�cients hi(n).
That is,

Hi(m;n) = hi(Pm � n) m = 0; � � � ; N=P � 1

and n = 0; � � � ; N � 1 (4)

Equation (3) is equivalent to (1) apart perhaps from
the boundary of yi. However, for large number N this
mismatching is neglitible. Let us denote as y a vector
containing all subband components yi; i = 0; 1; � � �; P �
1, that is y = [yT

0
; � � � ;yTP�1]

T . Then, based on (3) the
vector y can be expressed as

y = Hx (5)

where matrix H is de�ned as

H = [HT
0
� � �HT

P�1 ]
T

(6)

In a similar way, equation (2) can be expressed in a
matrix form as follows

x̂ = FTy (7)

where x̂ is a vector which corresponds to the recon-
structed elements x̂(n), n = 0; � � � ; N � 1 and matrix
F is formed similarly to H.

3 OPTIMAL DECIMATORS COMPENSAT-

ING FOR ADDITIVE NOISE

The use of perfect reconstruction �lters, i.e.,FTH = IN ,
where IN stands for the N � N identity matrix, guar-
antees that x(n) = x̂(n). However, in practice, there
is a variety of reasons for deviation from this assump-
tion. For example, a non linear quantization is usually
performed in subband domain which disturbs signal y.
This means that the use of �lters which satisfy the prop-
erty FTH = IN does not deduct that the reconstructed
signal x̂(n) is as much as possible close to x(n).

3.1 Problem Formulation

In this paper a quantization noise is assumed that dis-
turbs the signal y. Let us denote as z the signal after
the quantization. Then we can write that,

z = Q(y)

with Q(y) = qi for qi 2 Ri (8)

Ri are regions of the N -dimensional space RN while qi
correspond to the quantization levels. The set of Ri con-
stitute a complete partition of the space RN . Usually,
we consider quantizers that use the same quantization
decision levels for all samples of y. In this most popular
case Ri correspond to convex hyper cubes.
To optimally estimate the analysis �lter H that com-

pensates the e�ect of quantization noise a distortion cri-
terion should be minimized with respect to the matrix
H. This criterion expresses the di�erence of the actual
signal x and the reconstructed one x̂. The distortion
criterion used in this paper is the following

D =

Z
x2RN

d(x; x̂)f
X
(x)dx (9)

where f
X
(x) is the joint probability density function

(pdf) of the vector x and d(�) the distance between
the two vectors, usually given by the Euclidean met-
ric, d(x; x̂) = (x� x̂)T � (x� x̂) . The integration in (9)
is performed over the N -dimensional space RN .
In the case of uniform distribution, the pdf factor of

(9) reduces to an unimportant scalar, constant with re-
spect to the matrixH and an analytical solution is pos-
sible. Since in most cases an appropriate transformation
of the vector x prior to the analysis stage can be per-
formed in order to convert the pdf of x to a uniform one,
in the sequel we assume f

X
= 1. As a result, the term

corresponding to f
X
(x) can be omitted for the mini-

mization procedure.
Equation (8) indicates that the noise, introduced by

the quantizer, is correlated to the analysis �lter. The
optimal analysis matrixH is then derived by minimizing



(9). Based on both (5 and 8) and using the Euclidean
metric for the distance d(�), eq. (9) can be expressed as
follows

D =

Z
x2RN

�
x� FTQ(Hx)

�T
�
�
x�FTQ(Hx)

�
dx

(10)
Using the partitions described in (8) and changing

the variable of integration from x to y, eq. (10) can
be written as a sum of integrals over all partitions Ri.
That is,

D =
X
i

Z
y2Ri

�
By �FTqi

�T
�
�
By � FTqi

�
jdet(B)jdy

(11)
provided that matrix H is of full rank and B =H�1.
The optimal elements of B (and consequently of H)

are derived through the di�erentiation of (11) with re-
spect to matrix B. Minimization of (11) is in general
involved for the optimal analysis �lter design. It re-
duces, however, to a more tractable expression under
the assumption that H is unitary i.e., under the con-
straint

HTH = I (12)

3.2 Problem Solution

For the minimization of (11) subject to the constraint
(12), the Lagrange multipliers are used. In particular,
the solution is obtained through minimization of the fol-
lowing equation with respect to B and �

L = D + tr
�
�(BTB� I)

�
(13)

where � contains the elements of the lagrange multi-
pliers and corresponds to a symmetric unknown matrix
since the the constraint HTH = I is a set of symmetric
equations. Estimation of the matrix B is performed
by di�erizing (13) with respect to B and �, that is
@L=@� = 0 and @L=@B = 0. The �rst partial derivative
concludes to the constraint (12) while the second one to

@L

@B
= A+C + 2B� (14)

where matrices A, C are expressed as

A = jdet(B)j
X
i

Z
y2Ri

�
2ByyT � 2FTqiy

T
�
dy (15)

and

C = B�T jdet(B)j
X
i

Z
y2Ri

kBy � FTqik2dy (16)

Matrices A and C of (14) involve integration over
all quantization partitions Ri. Let us assume that the
quantization levels are of hyper cubes form, since there
is no reason to apply di�erent quantization to some el-
ements of x(n). Then,

R
y2Ri

yTdy = qTi vi where vi

stands for the hyper-volume of the ith partition. Con-
sequently, the second term involved in matrix A can be
written as

X
i

Z
y2Ri

�2FTqiy
Tdy = �2FT

X
i

qiq
T
i vi (17)

The
P

i qiq
T
i vi over all i can be expressed as a matrix,

say, Q.

Q =
X
i

qiq
T
i vi (18)

Thus, the RHS of eq. (17) can be written as �2FTQ.
It can be shown that all diagonal elements of Q are
equal. As a result, matrix Q is characterized by only
two di�erent elements. If in addition the quantizer is
symmetric w.r.t. the Q = �I.

The integral involved in the �rst term of A can be
decomposed as

R
y2Ri

yyT dy = qiq
T
i vi + diag(i;k)vi

where diag(i;k) represents a diagonal matrix with el-
ements i;k. The i;k corresponds to the quantization
error of the kth element of the ith partition Ri. The in-
dex k takes value between 0 and N�1. It can be shown,
using the quantization properties, that i;k = dx2i;k=12,
where dxi;k is the interval of the kth element of the ith
partition. Based on the previous observations and since
the �rst term of A involves summation over all parti-
tions i, we have that

X
i

Z
y2Ri

2ByyTdy = 2BQ+ 2BI (19)

where the scalar  =
P

i i;kvi, is independent from k

due to the quantization properties. Since BTB = I,
jdet(B)j = 1. Therefore, matrix A can be decomposed
as

A = 2B(Q+ 2I) � 2FTQ (20)

In a similar way, we can show that the matrix C can
be written as

C = B
�T
�
tr(Q+ I + FF

T
Q)� 2tr(BT

F
T
Q)
�
(21)

Using the (20, and 21), eq. (14) transforms to

BTFTQ+ tr(BTFTQ) = � +Q+ �I = � +Q0 (22)

where �I =
�
tr(Q+ I +FFTQ)=2 + 

�
I and Q0 =

Q+ �I.

Estimation of matrix B and consequently H is per-
formed through equation (22) and the constraint (12).
Let us �rst denote as G the matrix BTFTQ, i.e.,
G = BTFTQ. Then, for a given quantizer and inter-
polation �lter and a given matrix �, there always exist
only one matrix G and vice versa (22). That is, the
non diagonal elements of G, gi;j with i 6= j are equal
to �i;j + q0i;j, while the diagonal ones of G, say, gi;i are
obtained by solving a linear system depending on the
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Figure 2: Reconstruction mean squared error versus
number of quantization levels

elements �i;i + q0i;i. The fact that matrices � and Q0

are symmetric implies that matrix G is also symmet-
ric. Then, due to eq. (12) matrix G is obtained via the
following Ricatti equation

GRG� I = 0 (23)

where R =
�
FTQ

��1 �
FTQ

��T
. Matrix R is posi-

tive de�nite and thus there always exist one solution of
(23). Having computed matrix G only one symmetric
proper matrix � exists so that (22) is ful�lled. Matrix
H which represents the decimator can be optimally ob-
tained through the following equation

H = G�1(FQ)T (24)

From the previous equation it is observed that in case
that interpolating �lters correspond to unitary F, (i.e.,
FTF = I as in case of QMF �lterbanks, then optimal
decimator is the inverse matrix HF�T .

4 EXRERIMENTAL RESULTS

The performance of the proposed �lters was tested us-
ing uniformly distributed random one-dimensional input
signals x(n). The quantizer is considered to be uniform
while the number of quantization levels varies between
successive experiments. The decimator �lter, used in the
process, has been derived by the biothogonal ones and
it is assumed to be the same for all experiments while
Several QMF �lters have been used as decimators.

Figure 2 illustrates the mean squared error (MSE)
of the original and the reconstructed signal at di�er-
ent quantization levels and for di�erent QMF �lters
(Daubechies and Symlet). It is observed that the pro-
posed method results in minimum MSE for a given
quantizer (or equivalently a certain number of levels)
for all unitary decimators �lters.

5 CONCLUSIONS

In this paper, we derive an analytic method for ob-
taining optimal decimator �lter which compensates the
quantization noise. The method includes a minimiza-
tion of a distortion criterion, possibly via solution of
a Ricatti equation. The performance of the proposed
technique is examined using uniformly distributed ran-
dom input signal and quantizer with varying number of
levels.
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