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Abstract

The field of multi-agent systems has reached a significant
degree of maturity with respect to frameworks, standards
and infrastructures. Focus is now shifted to performance
evaluation of real-world applications, in order to quantify
the practical benefits and drawbacks of agent systems.
Our approach extends current work on generic evaluation
methodologies for agents by employing fuzzy weighted
trees for organizing evaluation-specific concepts/metrics
and linguistic terms to intuitively represent and aggregate
measurement information. Furthermore, we introduce
meta-metrics that measure the validity and complexity of
the contribution of each metric in the overall performance
evaluation. These are all incorporated for selecting optimal
subsets of metrics and designing the evaluation process
in compliance with the demands/restrictions of various
evaluation setups, thus minimizing intervention by domain
experts. The applicability of the proposed methodology is
demonstrated through the evaluation of a real-world test
case.

1 Introduction

Although agents and Multi-agent systems (MAS)
have gained their position as an attractive programming
paradigm for a broad range of application domains,
software practitioners are still reluctant in incorporating
agent solutions to solve real-world problems [6], thus
delaying or even impeding the development of engineering
methodologies that tackle all stages of the agent software
development life cycle. In order to prove agent
”competence”, focus is now given on the evaluation of
the quantitative advantages and drawbacks that agents and
MAS exhibit at runtime. Indeed, in the field of Intelligent
Systems (agents and MAS being a special case of), there
has been a significant activity towards defining methods and
metrics for evaluating aspects of emerging and intelligent
behavior [1].

This paper extends the Agent Performance Evaluation

(APE) methodology [3], a generic methodology that
provides a comprehensive structure for organizing and
using measurement-related information. The contribution
of this work is twofold. First, all crisp, numeric
representations of measurement information are replaced
with fuzzy sets and fuzzy operations, making the
performance characterizations more intuitive to human
evaluators. Furthermore, meta-metrics are introduced
in order to measure the validity and complexity of the
contribution of each metric in the overall performance
evaluation (Section 2). The presented methodology is
demonstrated and validated through the Trading Agent
Competition - Supply Chain Management (TAC/SCM) [2]
game (Section 3).

2 Fuzzy Metrics Representation Trees

A Metrics Representation Tree (MRT) is a structured
representation for the organization of metrics and
measurement information. The tree is organized in layers
that consist of Simple Metrics and Composite Metrics that
correspond to the directly measurable aspects of the system
and higher level evaluation concepts, respectively. An
overview of the structure of a MRT is depicted in Figure 1.

2.1 Simple and Composite Metrics

A Simple Metric yi(m) ∈ [0, 1] is defined as a fuzzy
set on the measurable aspect m. For example the Simple
Metric “high avg lead time” is defined on the measurable
aspect “avg lead time”, expressed in days. It is derived
that the membership value µYi = yi(m) corresponds to
the degree to which that particular agent assumes property
Yi = yi(m). Finally, we assume a finite set Y = {Yi}, to
denote the entire collection of Simple Metrics.

A Composite Metric Ek describes a performance aspect
of the system that corresponds to a higher level concept
that cannot be directly assigned a measured value collected
through experiments. For all Composite Metric applies that
Ek ∈ E, where E is the set of all Composite Metrics. Each
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Figure 1. A Metrics Representation Tree

Composite Metric is composed of other lower level Simple
or Composite Metrics.

Using the above descriptions, we can associate
hierarchically Simple and Composite Metrics. To do so, we
incorporate weights FSiEk

∈ [0, 1] that signify the degree
of contribution of metric Si to the definition of Ek, which
can be formulated as a discrete fuzzy set of the form:

Ek = F1k/S1 + F2k/S2 + . . . + Fnk/Sn (1)

where Fik = FSiEk
and Si ∈ S = Y ∪ E.

Composite Metrics that consist exclusively of Simple
Metrics follow the detailed definition:

Ek = F1k/Y1 + F2k/Y2 + ... + Fnk/Yn (2)

where Yi ∈ Y .

2.2 Meta-metrics

Three meta-metrics are defined in order to quantify the
evaluation procedure: Certainty, Validity and Complexity.

Certainty is defined as the degree to which a Composite
Metric exists in the MAS system under evaluation. Given
the detailed definition of Eq. 2 and the membership degrees
µYi of the Simple Metrics Yi, Certainty is defined as:

µEk
, U

i
(I(FYiEk

, µYi)), (3)

where U and I are the operators for fuzzy union and fuzzy
intersection respectively.

Validity of a Complex Metric Ek is defined as:

V(Ek) , U
i
(FYiEk

) (4)

Validity describes the maximum possible value of µEk

and thus the maximum amount of information that a
definition can provide.

Finally, Complexity describes the amount of time
required to acquire the measurement value for a Metric Ek.
It is defined as:

C(Ek) =
∑

i

c(ti) (5)

Validity and Complexity are independent from the
measurement results and are computed prior to the
identification. In contrast, Certainty depends on the
specific measurement values, assigned to Simple Metrics
and is, therefore, be computed after the execution of the
experiments.

2.3 Inference

Once the measured values for all Simple Metrics have
been collected, inference occurs in order to calculate the
values of higher level Composite Metrics, by combining
lower level metrics using union operations.

The first step is to transform the tree into a detailed
definition, ie, a single-level tree which defines a composite
entity based solely on simple metrics. This process
is essentially the computation of the weights of the
new tree. This is done by gradually substituting each
composite metric with it’s sub-nodes using fuzzy unions
and intersections. Consider the example of Figure 1. The
corresponding detailed definition of composite metric A is

A = F ′
aA/a + F ′

dA/d + FeA/e + FfA/f

where the new weights are computed as F ′
aA = FaA,

F ′
dA = I(FdB , FBA), FeA = I(FeC , FCB , FBA) and

FfA = I(FfC , FCB , FBA).
After computing the detailed definition weigths, we use

Equation 3 to fully evaluate the Composite Metric. This
inference procedure can be conveniently modeled using
fuzzy relations (see [4]).

2.4 Partial Evaluation

In order to provide the evaluator designer with tools
to select optimal subsets of Simple Metrics for saving
computational cost, we define Partial Certainty, Partial
Validity and Partial Complexity.

For a subset A of the set of Simple Metrics that
contribute to the definition Ek, Partial Certainty denotes
the confidence we have acquired that Ek exists in a data set
by evaluating only the properties in A. It is defined as:

µEk
(A) , U

Yi∈A
(I(FYiEk

, µYi)) (6)

Similarly, measures the “quality” of the set A in the
identification of Ek Partial Validity and is defined as

V(Ek/A) , U
Yi∈A

(FYiEk
). (7)



Finally, Partial Complexity is defined as:

C(Ek/A) ,
∑
i∈A

c(ti) (8)

2.5 Optimal Subset Selection

Given a Complexity threshold CT for the identification
of a Composite Metric Ek, we select those subsets of SEk

,
labeled Ai that satisfy the complexity criterion:

C(Ek/Ai) ≤ CT (9)

The optimal set A∗
T ∈ A maximizes the Validity meta-

metric:
V(Ek/A∗

T ) = max(V(Ek/Ai)) (10)

Trading-off between Complexity and Validity is a
decision problem that is solved based on time limitations
put by the designer. The optimal subset must identified
within a total of 2k subsets, for a MRT with k Simple
Metrics. The calculation of such a number of subset would
be inefficient given time constraints mentioned earlier.
However, the problem can be solved in pseudo-polynomial
time using dynamic programming, as explained in [5].

3 Demonstration

3.1 Experimental setup

Within the TAC/SCM environment [2], agents act as
Personal Computer (PC) manufacturers, willing to make
profit in the simulated market, by competing with others on
customer and supplier contracts, by means of auctioning.
In this context, a proper set of performance attributes
were selected by a domain expert and classified as Simple
and Complex metrics in a TAC/SCM-specific Fuzzy-MRT.
Figure 3.1 depicts the resulting MRT. Note that the
actual weight values are calculated by applying a genetic
algorithm on training data, as described in Section 3.2.
The weight notation Fi j in Figure 4 corresponds to the
contribution of child metric i to its parent j, according to
the metric enumeration provided in Table 1. Figures ?? and
?? depict the selected membership functions for the FU and
CompInv Metrics, respectively.

Agents run their own factory unit, which has limited
production capacity. Each day the game server sends
requests for quotes (RFQs) to all agents on behalf of
customers. Agents may make their offers to the customers
based on their ability to satisfy delivery dates and reserve
prices by sending a quote before the end of the day. The next
day, if an agent’s quote is a winning bid, the customer orders
from that agent and, to get paid, the manufacturing agent
must deliver the ordered PCs on-time. The manufacturing

Figure 2. The Metrics Representation Tree for
the TAC/SCM game

Figure 3. Sample Membership Functions for
a) Factory Utilization, and b) Component
Inventory

agent may either assemble the ordered PCs at that time
or it can use PCs previously assembled and stocked in
its inventory. Different types of PCs may be assembled,
each requiring a different component compilation. Agents
may procure components from eight different suppliers by
sending RFQs and issuing orders to the suppliers. If an
agent defaults in delivering customer orders, it is billed
with a penalty that is determined by the customer in its
initial RFQ. Figure 3 provides a schematic representation
of the game. One may easily identify four game phases:
(i) component procurement, (ii) inventory management,
(iii) production and delivery scheduling, and (iv) computer
sales.

A series of experiments was conducted in order to:
a) calculate the optimal weights for the branches of the
MRT, b) prove the validity of the MRT for evaluating the
performance of actual TAC agents, and c) apply complexity
control for partial evaluation. The experiments were
performed on a collection of log files, produced during the
execution of 530 games that involved the participation of a
total of 2400 agent instances. For each agent, the dataset
contains the crisp values of all Simple Metrics.



Table 1. Metrics for the TAC/SCM game
# Name Abbreviation Type Complexity DetDef Weight

1. Agent Performance - Composite - - -
2. Sales - Composite - 0.5512 -
3. Manufacturing - Composite - 0.9055 -
4. Procuring - Composite - 0.0819 -
5. Inventory - Composite - 0.7716 -
6. Market Share MS Simple 4000 0.4973 0.4253
7. Avg. Selling Price ASP Simple 4000 0.0769 0.2741
8. Factory Units FU Simple 220 0.9990 0.0696
9. Avg. Storage Cost ASC Simple 660 0.1451 0.7808
10. Stock Keeping Unit Inventory SKUInv Simple 440 0.8631 0.8124
11. Component Inventory CompInv Simple 220 0.8981 0.7524
12. Delivery Performance DP Simple 220 0.8318 0.1314
13. Avg. Lead Time ALT Simple 300 0.0866 0.0071

3.2 Training

In order to model the performance of an agent i on a
game we use the metric µ(i), as defined by a domain expert:

µ(i) =

{
w(BA(i)) × BA(i) if BA(i) ≥ 0
(1 − w(BA(i)) × BA(i) if BA(i) < 0

where BA(i) is the Bank Account of agent i after each
game.

Since the absolute value of BA is always related to the
correlated to the state of the simulated market in each game,
the weighted term w(BA(i)) is employed. w(BA(i)) is
defined as a function of attributes that remain constant
throughout each game, namely the Number of Agents (NoA)
participating in each game, the Avg Purchase Price (APP)
and the Customer Demand (CD):

w(BA(i)) = 0.3 × f + 0.45 × g + 0.25 × h

where f = 0.03 ∗NoA2, g = 0.125 ∗ (0.5− ln(CD)) and
h = eAPP /3.

Note that µ(i) is a posterior metric, meaning that it uses
information (Bank Account) not modelled by the MRT. To
calculate the optimal fuzzy weights we use the posterior
values µ(i) as ground-truth and minimize the error function:

err =
N∑

i=1

|µ̂(i) − µ(i)|

where N is the total number of agents in the training set
and µ̂(i) is the inferred value of the performance of agent i,
based on the currently calculated fuzzy weights.

To do so, we have employed a genetic algorithm, with
its chromosome comprising the 12 corresponding MRT
weights. The training process was applied to a total of 100
of the 2400 agents of the initial dataset and took less than
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Figure 4. Partial Validity for increasing
computational complexity

a minute on a typical Core 2 machine. The produced fuzzy
weights are presented in Column 7 (Weight) of Table 1.

3.3 Testing

Using the weights computed in the previous section, we
tested the produced Fuzzy MRT on the remaining 2300
agents of the dataset. The average error:

1
M

N∑
i=1

|µ̂(i) − µ(i)|

where M the total number of testing agents, was 0.0742.

3.4 Complexity Control

Finally, using the process of Section 2.3, we produced
the detailed definition of each Simple Metric. Using the
corresponding computation complexities (as depicted in
Column 5 of Table 1), we designed the evaluation procedure
for various setups. Figure 3.4 shows the attained partial
validity using to increasing complexity thresholds.

It is evident from this graph that, after a certain point,
increasing complexity threshold does not have significant



impact on the validity of the evaluation. We can, therefore
achieve satisfactory levels of validity for low computational
costs by properly designing the MRT.

4 Conclusions

In this work, we have presented an efficient scheme
for constructing and employing optimal fuzzy trees for
evaluating agent performance. A formal definition of the
fuzzy trees is provided, as well as three meta-metrics
for the quantitative assessment of the soundness of the
selected metrics. The presented scheme was applied to the
TAC/SCM domain. The produced MRT, containing optimal
weights calculated by a genetic algorithm, was applied to
performance data from previously conducted TAC/SCM
games. The results showed that the proposed approach
can be employed by agents in real-time. Moreover, under
limited resources, the MRT can be significantly simplified,
yet yielding satisfactory levels of evaluation accuracy.
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