
Dynamic Semantic Identification with Complexity
Constraints as a Knapsack Problem

M. Falelakis, C. Diou, A. Valsamidis and A. Delopoulos
Multimedia Understanding Group, Information Processing Laboratory

Department of Electrical and Computer Engineering
Aristotle University of Thessaloniki, Greece

Email: {manf, diou, tasos}@olympus.ee.auth.gr, adelo@eng.auth.gr

Abstract— The process of automatic identification of high level
semantic entities (e.g., objects, concepts or events) in multimedia
documents requires processing by means of algorithms that are
used for feature extraction, i.e. low level information needed for
the analysis of these documents at a semantic level. This work
copes with the high and often prohibitive computational complex-
ity of this procedure. Emphasis is given to a dynamic scheme that
allows for efficient distribution of the available computational
resources in application Scenarios that deal with the identification
of multiple high level entities with strict simultaneous restrictions,
such as real time applications.

I. INTRODUCTION

The extraction of high level semantic information from
multimedia documents has become a necessity due to the
exponential growth of the available multimedia information
that calls for efficient indexing and retrieval. Intensive re-
search efforts focusing on the developement of techniques
for efficient semantic information extraction are taking place
and utilize low level feature extraction algorithms in order
to gather information used to identify higher level semantics
(see [1] and [2] for example). However such techniques prove
to be demanding in terms of computational cost rendering
the semantic identification a difficult task, even for modern
computers. This problem becomes more apparent in real time
applications (e.g., robot navigation and monitoring systems)
that deal with identification of multiple semantic entities, often
within bulky data sets.

Present work proposes a general method for controlling
the complexity of the identification process by evaluating
semantic entities partially, in the sense that only a subset of
the algorithms that are needed to perform the identification
is evaluated. Consequently the overall computational cost is
reduced. It turns out that it is possible to select a subset that
minimizes the loss in accuracy, effectively providing the best
possible results, given the complexity limitations. In section
II a knowledge base called the fuzzy semantic encyclopedia
is presented that is used to define each semantic entity in
terms of other lower level semantic entities as well as low
level syntactic features. Thus, definitions of this knowledge
base correspond to semantic information extraction techniques.
Metrics that are used to determine the existence of an entity

in a data set; the accuracy, the validity and the complexity
of the results are introduced as well. Section III models
the problem of finding optimal subsets of algorithms for the
identification design as a “knapsack” [3] problem and manages
to solve it in pseudo-polynomial time. Another approach that
is useful in Scenarios where multiple semantic entities are
to be identified is examined in section IV and section V
demonstrates design examples providing comparisons between
the different design approaches. Finally, section VI concludes
this work by commenting on the results and issues that remain
to be addressed.

II. SEMANTIC IDENTIFICATION

In this section a knowledge base called Fuzzy Semantic
Encyclopedia is presented that can be used to cover the so
called semantic gap between lower level features and semantic
information in a multimedia data set. It consists of definitions
of high level Semantic Entities in terms of other, lower level
Semantic as well as Syntactic Entities. Moreover metrics are
defined that are used to rank the results and assist in the
design of the identification process with limited resources, as
explained in the later sections.

A. Syntactic and Semantic Entities

Consider a syntactic feature t that is a measurable quantity,
such as brightness or frequency, obtained by applying a cor-
responding algorithm τ on the given data set (e.g., a scene, an
image or a signal). A Syntactic Entity or property yi(t) ∈ [0, 1]
is a fuzzy number on a syntactic feature t. For example, the
property “very bright” is defined on the feature “brightness”
and the property red is defined on the feature “color”. In
general, if tτ is the result of algorithm τ that “measures” t,
the membership value µYi

≡ yi(tτ) corresponds to the degree
the particular data set assumes property Yi ∈ Y, where Y is
the set of all Syntactic Entities considered.

The term Semantic Entity refers to higher level objects or
concepts that cannot be directly measured and are closer to
human perception. The Fuzzy Semantic Encyclopedia is built
on the assumption that each Semantic Entity Ei ∈ E can be
described using other lower level Semantic as well as Syntactic

A B C

B C a b a c

FBA FCA FaB FbB FaC FcC

Fig. 1. Definitions of three Semantic Entities in a graph representation. Round
and square nodes correspond to Semantic and Sytactic Entities respectively.

Entities that collectively form the scope SEi
of Ei. Any scope

is a subset of S = Y
⋃

E, the set of all Semantic and Syntactic
Entities. If Semantic Entity A is described using the scope
SA = {B, a} while SB = {a, b}, then existence of a and b
implies the existence of B and existence of B and a implies
the existence of A. However in most cases each Entity Si ∈
SE implies E up to a certain degree FSiE ∈ [0, 1]. In that
sense a definition of a Semantic Entity Ek is a discrete fuzzy
set of the form

Ek = F1k/S1 + F2k/S2 + . . . + Fnk/Sn, (1)

where Fik ≡ FSiEk
.

A definition that is included in the Encyclopedia is called
a primary definition and may contain both Semantic and
Syntactic Entities. A definition that depends only on Syntactic
Entities is called a detailed definition. It is shown in [4] that
each non-detailed definition can be transformed into a detailed
one, so this paper deals only with the latter.

Skipping the formal presentation of this substitution proce-
dure, we illustrate its behaviour by the simple example of
Figure 1. The scopes of the Semantic Entities are SA =
{A, B}, SB = {a, b} and SC = {a, c} and the scope of
the detailed definition of A is SAd

= (SB

⋃
SC)

⋂
Y =

{a, b, c} so we need to calculate the new weights F of the
definition Ad = F d

aA/a + F d
bA/b + F d

cA/c. We use fuzzy
intersection for the transition from b to A via B, hence
F d

bA = I(FbB , FBA), where I is any fuzzy t-norm. Similarly,
F d

cA = I(FcC , FCA). There exist two paths that a is related
to A, through B with I(FaB , FBA) and through C with
I(FaC , FCA). We use fuzzy union to combine these two
values, i.e. F d

aA = U(I(FaB , FBA), I(FaC , FCA)), where U
is any fuzzy t-conorm. For our purposes the most appropriate
fuzzy union and intersection operators are the less “drastic”
ones, i.e. the ones that provide granularity in the calculation
of the weights F .

B. Metrics

In order to perform the actual identification of a Semantic
Entity Ek, i.e. decide whether it exists within a data set,
there is a need for a metric that would rank the success of
the identification of Ek. In the same manner that the value
µYi

measures the degree up to which a data set assumes the
property Yi, Certainty that Ek exists is given by

µEk

4
= U

i
(I(FYiEk

, µYi
)) (2)

where Ek is a detailed definition.
The maximum possible value of µEk

is assigned the term
Validity of the definition and is equal to

V(Ek)
4
= U

i
(FYiEk

), (3)

attained for µYi
= 1 for all Yi in the scope of Ek and the use

of the identity I(a, 1) = a (true for every t-norm I). Validity
is a measure of the information that a definition can provide
regarding a Semantic Entity and is therefore a property of the
definition itself.

Finally, a definition is characterized by the complexity
associated with the algorithms corresponding to its Syntac-
tic Entities. We assign a computational cost c(ti) to every
syntactic feature t and the Complexity of a definition is

C(Ek) =
∑

i

c(ti) (4)

where each syntactic feature corresponds to a Syntactic Entity
Yi ∈ Ek. Notice that this value will normally depend on the
size of the input data, as will the values c(ti).

III. OPTIMIZATION UNDER VALIDITY / COMPLEXITY

CONSTRAINTS

Having a limited Complexity budget for the identification
of a Semantic Entity Ek one should use only a subset of the
Syntactic Entities in SEk

for the identification. This subset
should provide the best possible results for the identification,
while the Complexity remains below the required limit.

A. Partial Metrics

Partial Certainty, Validity and Complexity correspond to the
metrics presented in section II-B if a subset A of the Syntactic
Entities of a definition Ek is evaluated.

Partial Certainty is defined as

µEk
(A)

4
= U

Yi∈A

(I(FYiEk
, µYi

)) (5)

and denotes the confidence we have acquired that Ek exists in
a data set by evaluating only the properties in A. In the same
manner, partial Validity is

V(Ek/A)
4
= U

Yi∈A

(FYiEk
). (6)

and partial Complexity

C(Ek/A)
4
=

∑

i∈A

c(ti) (7)

These metrics are nondecreasing and are therefore bounded
by the respective total metrics.

B. Design in terms of Complexity and Validity

Given a Complexity threshold CT for the identification of
a Semantic Entity using the detailed definition Ek, we select
those subsets Ai ⊆ 2SEk that satisfy the Complexity criterion

C(Ek/Ai) ≤ CT (8)

The optimal subset A
∗
T is the one that maximizes the

Validity,
A

∗
T = maximizer

Ai

(V(Ek/Ai)) (9)

Of course, setting the Complexity threshold CT ≥ C(Ek)
would lead to complete evaluation of the definition.

Similarly if a Validity threshold VT is given that the iden-
tification must exceed, then from all the subsets Ai ⊆ 2SEk

that satisfy the Validity criterion

V(Ek/Ai) ≥ VT (10)

the optimal subset is the one that has the smallest Complexity
value:

A
∗
T = minimizer

Ai

(C(Ek/Ai)). (11)

C. Efficient Identification Design

The problem of searching within |2SEk | subsets for the op-
timal one has prohibitive complexity (O(2n)). In this section
this problem is solved as a Knapsack problem [3] with a
nonlinear gain function (Validity) in pseudo-polynomial time.

Given a collection {1, 2, . . . , n} of n Syntactic Entities and
a Complexity threshold CT > 0, the goal is to find the optimal
set X∗(CT) = {x1, x2, . . . , xn} with xi ∈ {0, 1} denoting
whether the property i has been evaluated (xi = 1) or not
(xi = 0), so as to maximize the quantity

n

U
i=1

(Fik · xi) (12)

under the restriction
n∑

i=1

(c(ti) · xi) ≤ C (13)

This problem can be efficiently solved using dynamic
programming and this approach solves not only the original
problem Xn(CT), using n algorithms, but also all subprob-
lems of the form Xj(d) where d = 0, . . . , CT and j =
{1}, {1, 2}, . . . , {1, . . . , n} (where the ordering of algorithms
plays no role). The optimal solution returns an array containing
the solutions val∗(d), d = 0, . . . , CT for all subproblems.
Actually val∗(d) ≡ valn(d) where all n algorithms are taken
into account. The respective subset is X∗(d) ≡ Xn(d). The
Bellman recursion [5] is used where if valj−1(d) has been
computed for all Complexity thresholds d = 0, . . . , CT then
we can calculate valj(d) (i.e. consider algorithm j) as

valj(d) =

(

valj−1(d) if d ≤ c(j)

max{valj−1(d),U(valj (d − c(j)), Fjk)} if d ≥ c(j)
(14)

Algorithm 1 Designing with Dynamic Programming.
1: for d := 0 to CT do
2: val0(d) := 0
3: end for
4: for j := 1 to n do
5: for d := 0 to c(j) do
6: valj(d) := valj−1(d)
7: end for
8: for d := c(j) to CT do
9: if U(valj−1(d − c(j)), Fjk) > valj−1(d) then

10: valj(d) := U(valj−1(d − c(j)), Fjk)
11: else
12: valj(d) := valj−1(d)
13: end if
14: end for
15: end for
16: for d := 0 to CT do
17: val∗(d) := valn(d)
18: end for

The pseudocode of this process is presented in Algorithm 1.
In order to compute the optimal sets of algorithms X∗(d)

for each threshold (see [3] pp. 22 - 25) we observe that the
set Xj(d) differs from an item of the previous iteration j −
1 by at most one element xj . It is thus sufficient to keep,
in every iteration, a pointer Aj(d) ∈ [0, 1], that is Aj(d) =
1 if valj(d) := U(valj−1(d − c(j)), Fjk) > valj−1(d) and
j was included, while Aj(d) = 0 if valj(d) := valj−1(d)
and algorithm j was not included. Finally to construct the set
X∗(d) by going through the pointers, we do the following: If
An(d) = 1 then algorithm n belongs to the optimal subset and
we go on by checking An−1(d−c(j)), otherwise (An(d) = 0)
n was not included and we proceed with An−1(d).

To prove the correctness of Algorithm 1, we notice that for
j = 1 the values val1(d) are the optimal for any threshold
d, since there is only one algorithm which can be included or
not. We assume by induction that for 1 < j ≤ n, valj−1(d) are
the optimal Validities for any d, 0 ≤ d ≤ CT . The following
cases exist:

1) The available Complexity d is less than the Complexity
c(j) so j cannot be included, hence the optimal subset
has valj(d) = valj−1(d).

2) There is enough Complexity for j, i.e. d ≥ c(j) and j
may be included.

For the second case we must prove that valj(d) =
max(valj−1(d),U(valj−1(d−c(j)), Fjk)). If j is not included
in the subset, then the maximum Validity occurs from the
subset calculated in j − 1 and is valj−1(d). If j is included,
then j can be added to any subset corresponding to valj−1(l),
where l ≤ d − c(j) (since j needs at least c(j) of the
available Complexity budget). In this case the maximum
possible Validity of the subset is valj(d) = U(valj−1(d −
c(j)), Fjl) because valj−1(d − c(j)) ≥ valj−1(l) (Validity

is nondecreasing). The optimal Validity will therefore occur
by the maximum of the two possible values, i.e. valj(d) =
max(valj−1(d),U(valj−1(d − c(j)), Fjk). Hence Equation
(14) on which Algorithm 1 is based yields the correct results
when Validity is the gain function.

The computational complexity of Algorithm 1 is O(nCT),
i.e. the problem Xn(CT) is solved in pseudo-polynomial time.
At the same time, all subproblems of the form Xj(d) are
solved as well, so setting a Complexity threshold CT ≥ Ctotal

solves all the design problems for a Semantic Entity.

IV. DYNAMIC SIMULTANEOUS IDENTIFICATION

The design scheme presented in the previous section allows
for efficient identification of a single Semantic Entity in a
document with limitations in the available Complexity. The
design takes place before the actual search and is based on
Validity, a metric that depends solely on the definition used
and is therefore a priori computable.

For real-time environments, where multiple Entities need
to be identified, and/or for systems that need to identify Se-
mantic Entities in multiple documents a dynamic scheme that
constantly reevaluates the design based on the identification
results is more adequate. Consider the example of a traffic
monitoring system that uses cameras to monitor a street junc-
tion. Semantic Entities such as “Traffic Congestion”, “Traffic
Jam” and “Accident” need to be identified. The identification
has to be performed in real-time while the system resources are
limited and exhaustive evaluation of the Syntactic Entities is
impossible. In the dynamic scheme proposed in this section, a
fraction of the available Complexity “budget” (processor time,
for example) is first distributed among the Semantic Entities
and the identification is performed with a low Complexity
threshold for each one of them. The remaining Complexity
is then given to the Entities that acquire a relatively high
Certainty i.e. there is an indication that they exist in the data
set.

The simplest solution to the problem of sharing the available
Complexity CA is to distribute complexity fractions gk · CA

to each Semantic Entity Ek , where
∑
k

gk = 1 and 0 <

gk < 1 denotes the importance of the Semantic Entity Ek

in the scenario considered. The design is then performed for
each Semantic Entity separately, as presented in section III-B.
However this approach is not optimal mainly due to the fact
that it does not take into account that definitions may have
common Syntactic Entities that need to be evaluated only once.
In the following we propose two different approaches that can
be used to cope with this issue.

A. The “Competitive” Approach

Suppose we need to identify the Semantic Entities Ei ∈ Es

with a limitation Cs in the available Complexity. Similarly to
the definitions in the Semantic Encyclopedia that use Semantic
and Syntactic Entities we may consider Ei as members of the

definition of an even higher level Semantic Entity W that is
the application scenario i.e.

W = G1W /E1 + G2W /E2 + . . . + GnW /En, (15)

where the weights G have a similar meaning to the weights F
used in a definition, denoting the importance of each Semantic
Entity for the scenario. The scope of W is therefore SW ≡ Es.

The definitions Ei are detailed and in order to compute
the direct contribution of each Syntactic Entity in the scope
S

d
W = SE1

∪ . . .∪SEn
, we use the same method that has been

presented with an example in section II-A. For each Syntactic
Entity Yj participating in one of the definitions Ei we calculate
the degree up to which Yj is related to W as

GYjW = I(FYjEi
, GiW). (16)

If a Syntactic Entity participates in more than one definitions
El we use fuzzy union to combine the different values,
consequently

GYjW = U
l
(I(FYjEi

, GiW)), (17)

for all l ∈ {i | Yj ∈ SEi
}.

Having obtained the direct relation of each Syntactic Entity
to the scenario W it is possible to design the identification
with a threshold Cs using the design in terms of Complexity
presented above (section III-B). The criterion that needs to be
maximized in this case is

V(W) = U
j
(GYjW). (18)

By using fuzzy union in its definition, maximization of
V(M) becomes essentially equivalent to requiring a good
performance of the identification “as a whole” even if some
monitored entities “are paid less attention”. The design using
dynamic programming presented in section III-C applies here
as well. Equations (16) and (17) assure that a Syntactic Entity
that participates in multiple definitions or is important for the
identification of a Semantic Entity in the Scenario will be
assigned a high value G.

Note that this process is used to select the Syntactic Entities
that will be evaluated during the identification of Ei with
limited Complexity and the “Scenario” has no perceptual
counterpart, that is, no Certainty can be defined for it. Eval-
uation of the aforementioned Syntactic Entities will yield
Certainty values for each Semantic Entity Ei separately. The
selection of Syntactic Entities, however, does not take into
account the Semantic Entities in which they participate, but
aims at the optimal use of the available Complexity. It is
therefore possible that an Entity is completely ignored in the
sense that none of its properties are selected, in favor of other
Semantic Entities that are defined by properties that have a
greater contribution to the Scenario. This justifies the use of
the term “competitive” for this approach.

B. The “Welfare” Approach

If a subset of Syntactic Entities participating in a definition
is selected, then Validity is a measure of the accuracy of
the results obtained by using this subset. If, contrary to
the “competitive” approach, we wish to ensure that all the
Semantic Entities of the scenario are taken into consideration
then the selected subset of Syntactic Entities should maintain
decent Validity levels for each Semantic Entity. This can be
achieved by selecting a subset that maximizes a function
Z(VE1

, . . . , VEn
) that has the following properties:

1) If the Validity of a Semantic Entity decreases then Z is
also decreased and if VEi

= 0 for a Semantic Entity Ei,
then Z becomes zero as well.

2) If VEi
is the minimum of the Validities then Z ≤ VEi

.

These properties ensure that no Semantic Entity is com-
pletely ignored and while no Semantic Entity has a low Valid-
ity in favor of another. We observe that every t-norm satisfies
the above conditions, but again, the best functions for the
design are the ones that provide granularity in the identification
(i.e. its value is determined by all arguments, contrary to the
case of min for example, where only the minimum value
is taken into account). A reasonable choice is the algebraic
product, hence Z(VE1

, VE2
, . . . , VEn

) = VE1
VE2

. . . VEn
.

Consequently, in this approach (the “welfare” approach) if
S

d
W are the Syntactic Entities participating in the scenario and

2S
d
W are all their possible combinations, then we select those

Ai ∈ 2S
d
W that satisfy the Complexity criterion C(Ai) ≤ Cs.

From all the sets Ai we select the one that maximizes Z,

A
∗ = maximizer(Z(VE1

, . . . , VEn
)), (19)

where VEi
= V(Ei/A

∗), the Validity of Ei obtained for the
set of Syntactic Entities under consideration.

Finding the optimal subset i.e. the one that maximizes the
function Z is also a problem with exponential complexity
and cannot be directly solved using dynamic programming
contrary to the case of designing in terms of Complexity for a
single Entity. However a near-optimal solution can be obtained
by using a variation of Algorithm 1, presented in Algorithm
2.

V. EXPERIMENTS

A set of indicative synthetic experiments was carried out,
the results of which are displayed in this section.

During the first experiment, a random detailed definition,
consisting of 100 syntactic features with uniformly distributed
values for Complexity and weight factors was created. Figure
2 illustrates the attained Validity for various Complexity
thresholds. It can be noticed that decent Validity values
are obtained under relatively strict Complexity limitations.
Increasing the threshold is always followed by an increase of
the attained Validity, but after a certaint point, this increase is
not proportional to the required computational cost. It is also
important to mention that even though such a definition would

Algorithm 2 Designing with Dynamic Programming for the
Welfare Approach.

1: for d := 0 to CT do
2: z0(d) := 0
3: end for
4: for j := 1 to n do
5: for d := 0 to c(j) do
6: if zj(d − 1) < zj−1(d) then
7: zj(d) := zj−1(d); algosj(d) := algosj−1(d)
8: else
9: zj(d) := zj(d − 1); algosj(d) := algosj(d − 1)

10: end if
11: end for
12: for d := c(j) to CT do
13: A := algosj−1(d − c(j))
14: t := I

k
(U(U

i∈A
(Fik), Fjk))

15: if t > zj−1(d) then
16: if t > zj(d − 1) then
17: zj(d) := t
18: algosj(d) := {A, j}
19: else
20: zj(d) := zj(d − 1); algosj(d) := algosj(d − 1)
21: end if
22: else
23: zj(d) := zj−1(d); algosj(d) := algosj−1(d)
24: end if
25: end for
26: end for
27: for d := 0 to CT do
28: z∗(d) := zn(d)
29: end for

entail an astronomical cost of 2100 computations if calculated
exhaustively, it only takes seconds to run on a typical pentium
PC, when using Algorithm 1.

In the next experiment, we constructed definitions for three
different entities, using 10 algorithms with random Complexity
and weight factors and then designed the identification process
according to the “competitive” and the “welfare” approach.
Figure 3 displays the Validity attained for various Complexity
thresholds for each entity. We notice that using a “welfare”
approach (Figure 3(a)), results in a more balanced increase of
Validities in terms of Complexity spent. On the other hand,
the “competitive” approach (Figure 3(b)) achieves higher total
Validities much faster.

Finally, figure 4 shows the Z values attained when using
Algorithm 2 (dynamic programming) versus the optimal ones
resulting from an exhaustive evaluation of all possible subsets.
As expected, the results of Algorithm 2 are suboptimal,
providing, however, a very satisfactory approximation of the
optimal values.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Complexity Threshold

Dynamic Programming

V
al

id
ity

Fig. 2. Designing in terms of Complexity for a single entity using dynamic
programming.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Complexity Threshold

V
al

id
ity

Welfare approach

Entity 1
Entity 2
Entity 3

(a)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Complexity Threshold

V
al

id
ity

Competitive approach

Entity 1
Entity 2
Entity 3

(b)

Fig. 3. Attained Validity for each semantic entity vs. various Complexity
thresholds; (a)the welfare and (b)the competitive approach;.

VI. CONCLUSIONS

A set of methods that can achieve Complexity control
in the semantic identification was presented in this paper.
Three metrics, namely Certainty, Validity and Complexity
were defined and allowed the design in terms of Complexity
restrictions by using only a subset of the algorithms involved.
The straightforward task of selecting the optimal subset of
Syntactic Entities to use when designing the identification
of a single Semantic Entity has a prohibitive computational
cost, a problem that was confronted with the use of dynamic
programming.

When dealing with multiple Semantic Entities in a data set
two methodologies were proposed for sharing the available

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Complexity Threshold

Z

Welfare Approach

Exhaustive Search
Dynamic Programming

Fig. 4. The welfare approach. Attained z values using exhaustive search vs
dynamic programming.

computational Complexity. The “welfare” approach aims at the
distribution of resources in a way that preserves the balance
between the Validities of each individual Semantic Entity.
On the other hand, the “competitive” approach makes no
provisions for each separate Semantict Entity but tends to
increase the overall accuracy of the identification.

Possible applications of the methodologies introduced in
this work include systems where strict time/complexity limita-
tions apply for the identification of multiple semantic entities
such as robot navigation in unknown environments and traffic
monitoring systems. The proposed methodologies could also
prove useful in systems dealing with large amounts of data
such as medical knowledge bases as well as multimedia
indexing and retrieval applications.

REFERENCES

[1] J. Assfalg, M. Bertini, C. Colombo, and A. Del Bimbo. Semantic
annotation of sports videos. IEEE Multimedia, 9(2), April-June 2002.

[2] R. Leonardi, P. Migliorati, and M. Prandini. Semantic indexing of sport
program sequences by audio-visual analysis. In IEEE International
Conference on Image Processing, ICIP, Barcelona, Spain, September
2003.

[3] Hans Kelleler, Ulrich Pferschy, and David Pisinger. Knapsack Problems.
Springer, 2004.

[4] M. Falelakis, C. Diou, A. Valsamidis, and A. Delopoulos. Complexity
control in semantic identification. In IEEE International Conference on
Fuzzy Systems, Reno, Nevada, USA, May 2005.

[5] R.E Bellman. Dynamic Programming. Princeton University Press, 1957.

