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Abstract—Parkinson’s Disease (PD) is a slowly evolving neuro-
logical disease that affects about 1% of the population above 60
years old, causing symptoms that are subtle at first, but whose
intensity increases as the disease progresses. Automated detection
of these symptoms could offer clues as to the early onset of the
disease, thus improving the expected clinical outcomes of the
patients via appropriately targeted interventions. This potential
has led many researchers to develop methods that use widely
available sensors to measure and quantify the presence of PD
symptoms such as tremor, rigidity and braykinesia. However,
most of these approaches operate under controlled settings,
such as in lab or at home, thus limiting their applicability
under free-living conditions. In this work, we present a method
for automatically identifying tremorous episodes related to PD,
based on IMU signals captured via a smartphone device. We
propose a Multiple-Instance Learning approach, wherein a subject
is represented as an unordered bag of accelerometer signal
segments and a single, expert-provided, tremor annotation. Our
method combines deep feature learning with a learnable pooling
stage that is able to identify key instances within the subject
bag, while still being trainable end-to-end. We validate our algo-
rithm on a newly introduced dataset of 45 subjects, containing
accelerometer signals collected entirely in-the-wild. The good
classification performance obtained in the conducted experiments
suggests that the proposed method can efficiently navigate the
noisy environment of in-the-wild recordings.

I. INTRODUCTION

PARKINSON’S Disease is a long-term neurodegenerative
condition that targets the central nervous system. Its

symptomatology includes motor symptoms, such as tremor,
bradykinesia, rigidity and hypomimia, as well as symptoms of
non-motor nature like constipation and insomnia. In particular,
tremor, bradykinesia and rigidity have been characterized as
cardinal symptoms, in the sense that regardless of the symptom
variability across different cases, the co-occurrence of at least
two of these symptoms is a good indicator of the disease [1].

Despite being incurable, early diagnosis of PD holds much
clinical benefit, since symptoms in earlier stages can be
managed more efficiently through appropriately targeted in-
terventions [2]. However, the initial symptom onset can be so
subtle that it goes unnoticed by the subjects until the disease
has already progressed. Therefore, development of automated
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tools and methods that can observe and quantify the severity
of PD symptoms outside laboratory conditions is a very useful
research direction.

Following this line of research, many methods to automati-
cally detect PD symptoms using data captured from a variety
of sensors have been proposed. For instance, [3] and [4] use
microphone-recorded speech signals to estimate the severity
of speech impairment that exhibits in some PD patients using
pre-computed features and Random Forest classifiers, while
[5] proposes a CNN-based deep learning architecture that uses
different CNN modules on different sets of features and then
merges the learned representations. In a similar vein, the work
of [6] uses a physical keyboard as a capturing device and
proposes a method to transform the recorded sequence of key
taps to a PD motor index. This approach is further refined
by [7] who use the virtual keyboard from a smartphone and
correlate the resulting index with the severity of bradykinesia
and rigidity. Hand dexterity is also used as a means of
PD diagnosis by the work of [8], who capture handwritten
dynamics via a smart pen sensor and use it to train a CNN
model to differentiate healthy from PD subjects. Many works
employ Inertial Measurement Unit (IMU) sensors for data
capturing. For example, [9] examines the feasibility of using
body-worn IMU sensors for performing gait analysis, with
the ultimate goal of inferring whether the wearer is a PD
patient. In a similar spirit, [10] [11] and [12] make use of
stand-alone accelerometer and gyroscope sensors to quantify
tremor severity, while [13] explores the potential of using the
IMU sensors embedded in smartphones as a viable means of
monitoring and detecting tremor.

The idea of using sensors embedded in commercial off-the-
self devices, such as smartphones and smartwatches is widely
explored by i-PROGNOSIS [14], a European Horizon 2020
research programme that adopts a holistic approach towards
early Parkinson’s diagnosis. In particular, it utilizes a multi-
modal approach, where data are collected unobtrusively and
in-the-wild, through smartphone embedded sensors including
IMU, microphone and virtual keyboard, and consequently
mapped to PD symptom indicators using machine learning
techniques. Thus, rather than inferring the presence of PD from
single symptom clues, i-PROGNOSIS examines the user’s
status with respect to multiple symptoms, as well as, their
longitudinal evolution, in order to detect the disease onset.

In this paper, we focus on the problem of automatically
detecting PD tremor from IMU data collected in-the-wild via
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a smartphone. Tremor detection in-the-wild, has received little
attention from the research community, owing to the inherent
difficulties of obtaining and properly annotating datasets in
that setting. To this end, we introduce a new dataset of
accelerometer recordings from both PD patients and healthy
users, captured outside laboratory conditions and without any
form of supervision or guidance, via a smartphone application
developed in the context of [14].

Unlike other symptoms that are present all the time, tremor
is of intermittent nature, that is, it may come and go un-
predictably or, more formally, exhibit on and off periods.
This problem is usually circumvented by recording the data
acquisition sessions with a camera. The video is then used
by medical experts to provide a fine-grained annotation of the
on and off periods. However, this solution does not apply to
data obtained unobtrusively in-the-wild, where observing the
subjects throughout their daily lives is impossible. Hence, in
that setting we must make do with the coarse label provided
by the medical experts during the examination of the subject.
Unfortunately, we cannot associate each IMU recording pro-
vided by a subject with this coarse tremor ground truth, as that
would introduce severe label noise to our models that would
prove devastating during training. Therefore, to mitigate this
issue, we propose to address the problem at hand as a case of
Multiple-Instance Learning (MIL).

Multiple-Instance Learning [15] is a supervised learning
scenario, where multiple instances or data points are grouped
together to form sets, commonly referred to in MIL termi-
nology as bags [16]. Each bag is associated with a single
label that depends on the labels of the instances it contains
according to some assumption. For example, the standard MIL
assumption that we adopt in this paper, dictates that for a
binary classification problem, a bag is considered positive if it
contains at least one positive instance and negative if contains
only negative instances. In our case, however, we are afforded
with only an approximation of the true bag labels that is
provided by an external oracle (be it the medical expert or
the subject itself), who operates without any knowledge of the
individual instance labels. For a detailed review of the different
MIL assumptions, as well as the most popular algorithms and
applications, we refer the reader to the survey of [16].

We can use the formalism of MIL to tackle the problem
of tremor detection in-the-wild. The MIL framework naturally
deals with the lack of fine-grained annotations (instance labels)
and thus we can use it to adequately handle the particular
nature of tremor: each subject can be represented as a bag of
accelerometer signal segments and a tremor annotation that
describes the whole bag. We propose a method to efficiently
model the probability that a subject has tremor given their bag
of acceleration segments, based on a recently proposed MIL
method [17], that makes use of the attention mechanism [18]
to identify key instances within a bag. The proposed method
builds upon a previous work of ours [19], that showed very
promising early results. In this paper, we extend that work by:

i) Enriching the original dataset with 8 additional subjects
for a total of 45 subjects.

ii) Introducing an alternative approach that operates on the
raw accelerometer values and outperforms the originally

proposed spectrogram-based method.
iii) Performing extensive experiments to confirm the potential

of our method.
iv) Publishing the dataset as open access data (available in

https://zenodo.org/record/3519213.)
The rest of this paper is organized as follows. Section II

discusses the most relevant work regarding in-the-wild tremor
detection from IMU sensors. Section III presents the proposed
tremor detection methodology. Section IV describes the dataset
used in our experiments. Section V discusses the experimental
setup and presents the results of our method along with
those of other popular alternatives. Section VI contains a
critical discussion of the proposed method. Finally, the paper
concludes with section VII.

II. RELATED WORK

Parkinsonian tremor is an involuntary muscle contraction
that typically exhibits at a frequency of 3-7 Hz. Its partic-
ular nature makes the use of inertial sensors, such as the
accelerometers and gyroscopes embedded in modern phones,
particularly appealing for developing data-driven tremor detec-
tion methods. Although many works have explored the use of
such sensors for tremor detection, the research community has
devoted little attention to developing algorithms that operate
well outside laboratory conditions. Most approaches, such as
[20], [21], are restricted to the home environment, while the
evaluation of the symptom severity takes place at pre-defined
moments during the day via self-administered tests, rather than
occurring unobtrusively.

One of the works most related to ours is that of [22],
in which the authors actually proposed a multiple-instance
learning scheme to detect PD motor symptoms based on 5
body-worn accelerometers. Two subjects were tasked with
wearing the sensors constantly for a period of four days while
completing their regular daily living activities. The subjects
were also asked to keep a journal of their medication intake
and approximate time intervals on which symptoms occurred
After data collection, the accelerometer stream was segmented
to windows of 6 seconds length and 1 second overlap, and
several hand-crafted features were extracted from each win-
dow. All the window feature vectors pertaining to a specific
time interval (of typical duration of 20 − 40 minutes) were
used to create a bag whose label was defined by the symptom
occurrence entry for that interval in the subject’s journal. The
Axis-Parallel Hyper-Rectangle (APR) [23] algorithm was then
trained using the acquired labeled bags from the first 8 hours
of the first day of monitoring. Evaluation on the data recorded
during the other days showed promising accuracy. However,
the authors do not provide details about the class imbalance
or the metrics affected by it (recall, specificity).

The more recent work of [24], extended the previous
approach by using a dataset of 5 PD patients all of which
exhibited tremor. Data collection took place under laboratory
conditions that resembled a home environment. In that setting,
the subjects were free to perform any from a list of given
activities, such as walking, writing or playing chess, while
multiple cameras were used to provide detailed annotation

https://zenodo.org/record/3519213
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regarding the tremor intensity at each moment. Standard hand-
crafted features were extracted over 2-second windows with
1 second overlap. A window was considered tremorous if at
least half contained a tremor episode as identified by the video.
Consecutive window feature vectors were then pooled together
into larger segments of length varying from 30 seconds to
10 minutes, to form a bag. Each such bag was labeled using
two different methods: i) a bag was considered positive if it
contained at least one positive window i.e. labeling according
the standard multiple-instance learning label assumption ii) a
stratified method that considered the approximate percentage
of tremor within a segment, quantized in 4 levels correspond-
ing to 0-24%, 25−49%, 50−74% and 75−100%. The authors
performed leave one subject out experiments with classical
multiple-instance learning algorithms to show that perfor-
mance rapidly deteriorates for the standard labeling approach
as the segment length grows. Finally, they proposed a simple
modification, applicable to all multiple-instance algorithms,
that takes advantage of stratified labels so as to avoid the
deterioration in performance caused by the decreasing label
precision owing to the increase of the segment length.

While similar in spirit, our work differs from the previous
approaches significantly. First of all, we use a large dataset of
45 subjects that contains both PD patients, with and without
tremor, as well as completely healthy individuals. In addition,
our dataset was collected unobtrusively and under completely
unscripted and in-the-wild conditions. This means that the
noise levels are expected to be significantly higher compared
to data collected in lab or at home. Finally, contrary to other
works, where fine-grained labels are available, we only have
access to coarse subject-level labels, provided by experts.
Therefore, the main contributions of this paper are:

1) A method for binary detection of Parkinsonian tremor
from IMU data collected in-the-wild, that employs deep
neural networks for feature extraction as well as a
learnable pooling stage that can produce robust subject
embeddings, leading to high classification performance.

2) A new, challenging dataset of IMU recordings, collected
by a population of 45 PD and healthy subjects under com-
pletely unscripted and real-life conditions. The dataset is
available online in https://zenodo.org/record/3519213.

III. MULTIPLE-INSTANCE TREMOR DETECTION

Supervised learning is the learning situation where we are
provided with a set of instances xi ∈ RN and their correspond-
ing labels yi ∈ Y , and the goal is to infer a general mapping
f : Rn → Y . The label space Y can be either R (for regression
problems) or Z (for classification problems). The mapping f is
usually chosen from a wide class of functions f̂(x; θ) through
an optimization procedure that minimizes some suitable cost
function on the given set of instances, in order to find good
values for the parameters θ. In the Multiple-Instance Learning
setting, instead of individual instances, we are presented with
unordered sets of instances Xj = {xj1,xj2, . . . ,xjKj}, called
bags, and their corresponding bag-level labels yj . The goal in
this scenario is to infer a mapping f : 2R

N → Y , where 2R
N

denotes the power set of RN , that is to perform classification

or regression on the bag level. In the rest of this work, we
will assume that Y = {0, 1}, since our focus is the case of
binary classification of non-tremor (class 0) vs tremor (class
1). Hence, in our case the learned function f will map a given
bag to the probability that it belongs to the positive class:
f(X; θ) = pmodel(y = 1|X) = 1− pmodel(y = 0|X).

Since we are dealing with unordered sets it is evident
that the learned function f must be permutation invariant to
the elements in a bag. The recent work of [25] provides a
general strategy for modeling almost any permutation invariant
function over a set X , as a sum decomposition of the form
f(X) = ρ

(∑
x∈X φ (x)

)
, given suitable transformations φ, ρ.

Thus, we can model the bag label probability as:

pmodel(y = 1|X) = ρ

(
σ

x∈X
(φ (x))

)
(1)

where in our case:
i) φ : RN → RM independently maps each instance xi of
X to a low-dimensional embedding of size M .

ii) σ : 2R
M → RM is a weighted average of the instance

embeddings that produces a fixed-length bag representa-
tion.

iii) ρ : RM → [0, 1] transforms the pooled bag representation
to the final bag label probability.

Equation 1 allows for increasingly flexible model designs.
In particular, the function φ can be seen as performing feature
extraction on each instance, while the function ρ is a classifier
entity that outputs the final class estimation. In this work, we
use neural networks to parameterize these two functions and
adopt a learnable pooling scheme to compute the weight of
each instance in the pooling function σ. More specifically,
let H = {h1,h2, . . . ,hK} = {φ(x1), φ(x2), . . . , φ(xK)} be
a bag of K embeddings that results from the elementwise
application of the embedding function φ to the initial bag X .
According to equation 1, the function σ is defined as:

z = σ(H) =

K∑
k=1

akhk (2)

We can integrate learning of the weights ak in the training
procedure, by using a version of the attention mechanism [18],
modified appropriately in [17] to work for MIL tasks, that
takes the form:

ak =
exp (wT tanh (VhT

k ))∑K
k=1 exp (w

T tanh (VhT
k ))

(3)

Computation of the quantities ak is a highly non-linear
procedure, since the value of each ak depends both on the
value of the relevant embedding hk, as well as the learnable
parameters w ∈ RL×1 and V ∈ RL×M , via a composition
of non-linear functions. As we will see in section V, the
construction of Equation 3 is capable of identifying and
assigning large weights to key instances within a bag, allowing
the final classifier stage (the function ρ) to perform efficient
bag classification. This allows us to identify which instances
contributed the most to the model’s decision, thus adding a
degree of interpretability to the method.

https://zenodo.org/record/3519213
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Fig. 1: Overview of the bag creation process. Each subject is assigned a bag of accelerometer signal segments captured during
phone calls, and a single tremor label provided by experts.

We propose to apply the attention-based multiple-instance
framework described above to the problem of detecting Parkin-
sonian tremor from data collected in-the-wild. The rest of this
section outlines the process of creating a bag for each subject
using their contributed IMU data and the training procedure
of our tremor detection model.

A. Bag creation

During data collection, each subject contributes one tri-
axial accelerometer session for every phone call they make
during their participation period. Each phone call may be
of variable duration, which means that the recorded signals
will be of variable length. However, the bag instances are
assumed to be of a specific dimensionality (xi ∈ RN ). To
circumvent this issue, we resort to windowing each session
into non-overlapping segments of length W samples. In doing
so, we choose not to model possible intra-session dependencies
between neighboring segments. However, based on our exper-
imental results, this does not affect the method’s performance.

Let Si = {w1,w2, . . .wni
} be the result of performing seg-

mentation on the i-th session of a subject, where wj ∈ R3×W

and ni denotes the number of segments extracted from session
i. Given the session segments, we apply a pre-filtering step,
where only windows with energy above a threshold Emin are
kept. Sessions that end up with less than 2 segments after
this step, are discarded altogether. The surviving segments
across all sessions are collected in a large pool and sorted
based on their energy in the band [3, 7] Hz (the PD tremor
band). Finally, the top Kt (a scalar hyperparameter, common
to all subjects) segments are drawn from the sorted pool
and are used to form the bag of the subject, which is of
the form X = {x1,x2, . . . ,xKt

}. A schematic overview of
the bag creation procedure for a subject is given in Figure
1. For subjects that have less than Kt segments, we apply
zero-padding to reach the desired bag length and implement
a masking system that ignores these zero-padded instances
during our computations.

B. Model training

Each extracted bag X is then associated with the available,
expert-provided, tremor label y of the subject, to form a tuple
of the form (X, y). The set of these tuples is the training set
on which we will train our multiple-instance model.

In our previous work [19], the function φ operated on the
frequency domain. In particular, we used a fully-connected
neural network to perform feature extraction from the spectral
representation of each instance. In other words, each instance
was first transformed into its frequency representation and then
fed into the network. In this work, we propose an approach in
which the function φ operates on the time domain and uses
a Convolutional Neural Networks (CNN) to extract features
directly from the raw tri-axial acceleration signal. We do not
employ a CNN directly on the spectrogram, because we are
interested in high values in specific spectral coefficients (those
corresponding to 3-7 Hz) and CNNs are by nature translation
invariant. This means that a filter that has learnt to detect peaks
would not be able to differentiate between a peak at 4 Hz and
a peak at 20 Hz. Regarding the rest of the components, the
pooling stage σ is implemented as a simple two-layer fully-
connected network, while for the final classifier ρ we use
multiple fully-connected layers. Details regarding the specific
architecture choices of each stage are given in Section V.

The whole model, comprising the composition of ρ, σ, φ is
trained end-to-end for E epochs using the cross-entropy loss:

L = −E
X,y∼p̂data

[
y log(pmodel(y = 1|X))

+(1− y)(1− log(pmodel(y = 1|X))
] (4)

where p̂data denotes the empirical data distribution defined by
the available training data. Finally, when used for inference,
the class probability estimate provided by the model is trans-
formed into a class prediction using a threshold T .

IV. IN-THE-WILD DATA COLLECTION AND
PRE-PROCESSING

A. Collection

We propose to collect in-the-wild IMU data through a
mobile application developed in the context of [14]. The
data collection application operates on the background and
unobtrusively initiates recording of the accelerometer sensor
whenever a phone call, either incoming or outgoing, is placed.
The recording lasts at most for the first 75 seconds of the
phone call, so as to avoid draining the battery. Each recording,
consisting of the tri-axial accelerometer values, their times-
tamps and some metadata, is stored locally and transmitted
wirelessly on a server, when the appropriate conditions, e.g.
adequate battery levels, Wi-Fi access, etc., are met.
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TABLE I: Demographic characteristics of the subjects in our
dataset. For age, UPDRS scores, data contribution and relative
energy, we report the average value and in parenthesis the
standard deviation across the corresponding sub-population.
UPDRS20 and UPDRS21 values refer to the sum of both hand
scores. Relative energy refers to the ratio of energy in the
tremor band (3-7 Hz) over the total energy of a segment.

Healthy Controls PD Patients Total

Count 14 31 45
Age in years 55.4 (11.7) 62.1 (7.3) 60.0 (9.4)
Years diagnosed - 6.3 (3.6) -
UPDRS 16 0.07 (0.25) 1.09 (0.89) -
UPDRS 20 0 (0) 1.19 (1.25) -
UPDRS 21 0 (0) 0.96 (1.51) -
Sum of UPDRS-III 2.28 (3.47) 19.7 (11.5) -
No. of sessions 99.6 (151.3) 131.1 (166.2) 121.3 (162.4)
Session duration 30.4 (13.7) 33.8 (14.6) 32.9 (14.5)
Processed segments 441.0 (512.4) 576.8 (537.2) 534.6 (533.3)
Relative energy 0.35 (0.15) 0.38 (0.21) 0.37 (0.20)

B. Pre-processing

Due to the wide variety of different recording devices
expected during data collection, a common pre-processing
step is designed and applied to all collected signals to ensure
their homogeneity. First, problematic signals are discarded
altogether. The rejection criteria for a signal are: i) its total
duration is less than 20 seconds, ii) its estimated sampling
frequency is below 50 Hz, iii) it contains extreme values
(> 100 m/s2), iv) it contains too many missing values. Signals
that pass the rejection process are subsequently resampled
to a sampling frequency of 100 Hz, through the use of a
polyphase resampling step that involves linear interpolation, a
downsampling step of appropriate ratio, a low-pass filter and
an upsampling step, again, of appropriate ratio. A segment of
5 seconds is then removed from the start and the end of the
sessions, so as to discard the moments when the user either
picks up or hangs up the phone. In addition, the gravitational
component of the acceleration signal is removed via a high-
pass FIR filter of order 512 with a cutoff frequency of 1 Hz.

C. Annotation

To acquire tremor annotations for each subject, we resort
to the Unified Parkinson’s disease rating scale (UPDRS)
[26]. The UPDRS is the most commonly used scale used
by physicians to quantify the severity of the various items
in the PD symptomatology and keep track of the disease’s
longitudinal progression. It includes a self-reported part (part
II), where subjects themselves provide an estimation of their
symptom severity during daily living, as well as a motor
examination part (part III), where the attending physician
examines the subject using a standardized set of motor tests,
and provides a clinical evaluation of their status with respect
to each symptom. Each symptom (corresponding to a specific
UPDRS item) is given a score, generally between 0 and 4,
with 0 signifying absence of symptom. Regarding tremor,
the relevant UPDRS items are: UPDRS16, the subject’s self-
report for tremor at any body part, UPDRS20, the physician’s
score for hand tremor at rest, and UPDRS21, the physician’s

score for action or postural hand tremor. In reality, UPDRS20
contains separate sub-items concerning the existence of tremor
in each body extremity separately. However, as our focus is
on hand tremor, in the rest of this paper UPDRS20 will refer
only to the hand items.

All UPDRS scores that belong to the motor examination part
(UPDRS part III) were obtained by certified neurologists at
three locations: the Department of Neurology of the Technical
University of Dresden, Germany, the Department of Basic
and Clinical Neuroscience of the King’s College Hospital,
London and the Third Neurological Clinic of the Papanikolaou
Hospital of Thessaloniki. All subjects in the dataset underwent
a thorough neurological examination, strictly adhering to the
protocol of a UPDRS motor examination, at the location
corresponding to their country of residence.

Since our goal is to perform tremor detection, we use
the binarized sum of the individual hand scores as the final
target label. That is, if the sum of scores across hands is
positive, we consider that the subject belongs to the positive
class (has tremor). Accordingly, if the sum of hand scores
is 0 we consider the subject to be of the negative class (no
tremor). This leads to 3 potential sources of annotation, mainly
the binary versions of UPDRS16, UPDRS20 and UPDRS21.
However, one potential complication is that the UPDRS ex-
amination provides a clue as to the tremor severity only at the
moment of the examination. This can be problematic since
the examination could have coincided with an off period,
and therefore no tremor would be observed by the doctor.
In addition, a subject may have contributed too few data for
the symptom to be observed or they could have tremor only
on one hand and handle their device during phone calls with
the other. Each such eventuality is a source of label noise that
could severely affect the training of our algorithm. Hence, to
overcome these issues we resort to an additional source of
annotation that is produced by a group of signal processing
experts after visually inspecting the contributed signals of
each subject. A detailed account of how this annotation was
produced is given in V.

V. EXPERIMENTAL EVALUATION

In this section, we conduct a series of experiments to
evaluate our method with respect to the following aspects:
• Its efficacy in detecting tremorous episodes in-the-wild.
• Its dependence on the bag length.
• Its performance relative to popular alternatives.
For our experiments, we used a dataset of accelerometer

recordings that was collected in-the-wild via smartphone-
embedded IMU sensors. More specifically, multiple subjects,
both PD patients and healthy controls, recruited by the med-
ical experts participating in the study, downloaded the data
collection Android application, described in section IV-A,
and installed it on their personal smartphones. The typical
contribution period of a subject ranged from a few weeks to
several months, as they were free to uninstall the application
at any time. Therefore, each subject in the dataset contributed
a different amount of recordings, that depended on both the
number of phone calls they realized during the data collection
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period, as well as the duration of that period itself. In addition,
we imposed a minimum requirement on the amount of data
contributed from each participant in order for them to be
considered. Specifically, subjects whose bag contained less
than 30 segments in total after the session rejection step of
section IV-B and the segment rejection step of section III-A,
were not considered in our experiments. Ultimately, this led
to a final dataset of 45 subjects. Additional details regarding
the demographics of the subjects and their data contribution
are given in Table I.

Each subject in the dataset underwent a full clinical eval-
uation, including a UPDRS assessment carried out by neu-
rologists, at some point during their data contributing period.
In addition, a group of 2 signal processing experts from our
group used the subjects with the most extreme UPDRS scores
to acquire a sense of how tremor manifests in acceleration
signals. Then, the rest of the subjects were annotated by
individually inspecting the raw accelerometer signal of each
recording they had contributed as well as its spectrogram,
and taking into account both the subject’s self-report and its
clinical evaluation. During this process, a subject was labeled
as tremorous if a tremorous episode could be detected in at
least one of their contributed sessions upon visual inspection,
in compliance with the standard MIL assumption [15]. The
output of this process was used as an extra signal processing
expert annotation.

We evaluated our approach using two experimental method-
ologies: a Leave One Subject Out (LOSO) scheme and a
Repeated k-Fold (RkF) scheme. In the LOSO scheme, we use
the data from all the subjects except one to train a model,
evaluate the trained model on the left-out subject and repeat
the process so that all subjects are used for evaluation once.
In the RkF scheme, we split the subject group into k parts,
use the data from the subjects belonging to the k− 1 parts to
train a model and evaluate it on the subjects belonging to the
other part. The process is repeated so that all parts are used
once for evaluation and multiple repetitions of this procedure
are conducted (hence, the “repeated” in its name) for different
permutations of the subject group. In each repetition of both
experimental schemes, we conducted multiple trials to account
for the randomness inherent in the examined algorithms. We
performed training using the signal processing experts anno-
tations, as we consider them to be the most robust. Evaluation
was performed using each of the available annotations, mainly
UPDRS16, UPDRS20, UPDRS21 and signal processing expert
(denoted SP-expert for short) annotations.

For computing the energy of a segment in the band of
3 − 7Hz (a step required during the bag creation phase)
we used its frequency representation (computed according to
Welch’s method for spectral density estimation, as described
below) and summed the components that corresponded to that
frequency band. We also used Emin = 0.15 for discarding
segments with low activity. For our deep multiple-instance
approach, we used a window length W of 500 samples,
i.e. 5 seconds given the common sampling frequency of 100
Hz. For the instance embedding function, φ, we examined 2
different approaches, the one proposed in [19] that operates
on the frequency domain and the one proposed in this paper

that operates on the time domain. The frequency domain
approach, transforms each acceleration axis individually to the
frequency domain using Welch’s method with a window size
of 3 seconds and 75% overlap. Subsequently, the spectra across
the 3 axes are summed and the coefficients that correspond
to the frequency range [0, 25] Hz are kept, thus leading to a
vector of 76 elements. This frequency representation is then
fed to a fully-connected network of multiple layers to acquire
the instance embedding. On the contrary, the time domain
approach operates directly on raw signal values and employs
a CNN to extract features for each instance. In the following,
we will refer to the former approach as Deep-MIL-FC and to
the latter as Deep-MIL-CNN.

For both approaches, we resorted to standard network
architectures that are used throughout the literature for clas-
sification problems. Specific details about each architecture
are given in Table IV. Apart from the embedding function
φ, we kept the rest of the model architecture identical. We
used an embedding dimension, M , equal to 64. The attention
pooling stage was modeled by two fully-connected layers that
implemented Equation 3, with the attention dimension, L,
set to 16. The values for the hyperparameters M , L were
selected by experimentation on a small subset of the dataset.
The final classifier stage, ρ, was also implemented as a fully-
connected network with multiple layers (described in Table V).
The whole model was trained end-to-end for E epochs using
the Adam [27] optimizer with learning rate ε = 0.001 and the
suggested default values for the parameters β1, β2. Learning
rate decay was also applied during the last half of the training
that exponentially reduced the learning rate at the beginning
of each epoch by a factor of 0.9. The decision threshold, T ,
was set to 0.5. In total, the Deep-MIL-CNN model had 46627
trainable parameters and the Deep-MIL-FC model 65603.

We compared our method against 7 alternatives for solving
MIL problems. More specifically, we employed a Bag of Fea-
tures (BoF) [32] scheme for encoding a subject’s bag and then
used an SVM with the chi-square kernel to train a classifier
on the resulting bag encodings. We also examined the use
of the more robust Fisher Vector (FV) [33] encoding scheme
coupled with a linear SVM, similar in spirit to [31]. We
also compared against the Multiple Instance SVM (MI-SVM)
algorithm [30], an SVM variant whose formulation is modified
so that it can solve multiple-instance problems. In addition,
we evaluated against the models proposed by the authors of
[28], who suggest a similar architecture to the methodology
adopted in this paper. That is, a feature-extraction network
that operates on each bag instance independently, followed by
a pre-defined pooling operator, such as mean, max or log-sum-
exp, and, ultimately, a linear transformation to the bag label
probability. They propose 3 different models for producing
the bag embedding: a fully-connected network followed by
the pooling operator, a fully-connected network with deep
supervision, where for each hidden layer a different bag
pooling is produced and used for classification, and a fully-
connected network with residual connections, where in each
hidden layer the pooling operator is applied on the sum of the
current hidden representation with the hidden representation of
the previous layer. Lastly, we compared with the approach of
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TABLE II: Evaluation results for the LOSO experiment with bag length Kt = 1500. For each method we report the average
and the standard deviation of its performance metrics across 10 independent LOSO trials. Notice that the implementation of
MI-SVM that we use is fully deterministic, so there is no variance in its performance. Deep-MIL-FC was trained for E = 1000
epochs and Deep-MIL-CNN for E = 50 epochs. UPDRS annotations refer to binary versions of the physician-provided UPDRS
scores.

Evaluation on Model Precision Sensitivity Specificity F1-score

UPDRS16
(24 positive - 21 negative)

Simple-MIL 0.862 ± 0.047 0.362 ± 0.027 0.933 ± 0.023 0.522 ± 0.030
MI-Net-Simple [28] 0.808 ± 0.052 0.442 ± 0.028 0.876 ± 0.044 0.586 ± 0.020
MI-Net-DS [28] 0.759 ± 0.036 0.454 ± 0.012 0.833 ± 0.032 0.588 ± 0.012
MI-Net-Res [28] 0.711 ± 0.034 0.458 ± 0.019 0.786 ± 0.032 0.579 ± 0.017
BSN [29] 0.801 ± 0.054 0.425 ± 0.045 0.876 ± 0.049 0.570 ± 0.041
Deep-MIL-FC [19] 0.799 ± 0.004 0.496 ± 0.013 0.857 ± 0.001 0.628 ± 0.010
Deep-MIL-CNN (this paper) 0.780 ± 0.028 0.475 ± 0.038 0.848 ± 0.019 0.608 ± 0.033
MI-SVM [30] 1.000 ± 0.000 0.250 ± 0.000 1.000 ± 0.000 0.400 ± 0.000
BoF + SVM [31] 0.782 ± 0.098 0.208 ± 0.019 0.929 ± 0.038 0.340 ± 0.024
FV + SVM [31] 0.597 ± 0.036 0.438 ± 0.057 0.662 ± 0.050 0.523 ± 0.036

UPDRS20
(17 positive - 28 negative)

Simple-MIL 0.734 ± 0.054 0.435 ± 0.029 0.904 ± 0.023 0.587 ± 0.029
MI-Net-Simple [28] 0.620 ± 0.060 0.476 ± 0.018 0.818 ± 0.046 0.601 ± 0.016
MI-Net-DS [28] 0.597 ± 0.014 0.506 ± 0.029 0.793 ± 0.014 0.617 ± 0.019
MI-Net-Res [28] 0.568 ± 0.024 0.518 ± 0.024 0.761 ± 0.023 0.616 ± 0.018
BSN [29] 0.551 ± 0.037 0.412 ± 0.037 0.793 ± 0.042 0.540 ± 0.027
Deep-MIL-FC [19] 0.731 ± 0.006 0.641 ± 0.018 0.857 ± 0.001 0.733 ± 0.012
Deep-MIL-CNN (this paper) 0.714 ± 0.048 0.612 ± 0.039 0.850 ± 0.031 0.711 ± 0.032
MI-SVM [30] 0.667 ± 0.000 0.235 ± 0.000 0.929 ± 0.000 0.375 ± 0.000
BoF + SVM [31] 0.725 ± 0.077 0.276 ± 0.046 0.936 ± 0.021 0.425 ± 0.056
FV + SVM [31] 0.473 ± 0.033 0.488 ± 0.053 0.668 ± 0.051 0.560 ± 0.029

UPDRS21
(13 positive - 32 negative)

Simple-MIL 0.575 ± 0.034 0.446 ± 0.031 0.866 ± 0.014 0.588 ± 0.029
MI-Net-Simple [28] 0.466 ± 0.045 0.469 ± 0.023 0.778 ± 0.041 0.585 ± 0.018
MI-Net-DS [28] 0.458 ± 0.015 0.508 ± 0.038 0.756 ± 0.012 0.606 ± 0.019
MI-Net-Res [28] 0.439 ± 0.022 0.523 ± 0.031 0.728 ± 0.020 0.608 ± 0.022
BSN [29] 0.392 ± 0.026 0.385 ± 0.049 0.756 ± 0.036 0.507 ± 0.038
Deep-MIL-FC [19] 0.597 ± 0.009 0.685 ± 0.023 0.812 ± 0.001 0.743 ± 0.014
Deep-MIL-CNN (this paper) 0.576 ± 0.044 0.646 ± 0.051 0.806 ± 0.027 0.716 ± 0.037
MI-SVM [30] 0.333 ± 0.000 0.154 ± 0.000 0.875 ± 0.000 0.262 ± 0.000
BoF + SVM [31] 0.567 ± 0.078 0.285 ± 0.060 0.912 ± 0.019 0.430 ± 0.073
FV + SVM [31] 0.411 ± 0.031 0.554 ± 0.058 0.675 ± 0.049 0.605 ± 0.030

SP-expert annotations
(16 positive - 29 negative)

Simple-MIL 0.753 ± 0.044 0.475 ± 0.031 0.914 ± 0.017 0.625 ± 0.029
MI-Net-Simple [28] 0.808 ± 0.052 0.662 ± 0.041 0.910 ± 0.032 0.765 ± 0.023
MI-Net-DS [28] 0.799 ± 0.019 0.719 ± 0.042 0.900 ± 0.010 0.798 ± 0.026
MI-Net-Res [28] 0.756 ± 0.029 0.731 ± 0.029 0.869 ± 0.021 0.794 ± 0.018
BSN [29] 0.787 ± 0.062 0.625 ± 0.056 0.903 ± 0.037 0.737 ± 0.036
Deep-MIL-FC [19] 0.933 ± 0.001 0.869 ± 0.019 0.966 ± 0.001 0.914 ± 0.011
Deep-MIL-CNN (this paper) 0.987 ± 0.027 0.900 ± 0.057 0.993 ± 0.014 0.943 ± 0.034
MI-SVM [30] 0.833 ± 0.000 0.312 ± 0.000 0.966 ± 0.000 0.472 ± 0.000
BoF + SVM [31] 0.883 ± 0.084 0.356 ± 0.049 0.972 ± 0.021 0.519 ± 0.054
FV + SVM [31] 0.580 ± 0.071 0.631 ± 0.059 0.741 ± 0.064 0.679 ± 0.043

[29], that builds upon the MI-Net model to introduce a 2 stage
approach: it first learns a bag similarity metric via a trained
MI-Net model and it then uses it to derive a bag representation
vector, based on the similarities of the given bag with a set of
reference bags.

We denote the above models as MI-Net-Simple, MI-Net-DS,
MI-Net-Res and BSN respectively. For each of these methods,
we used max pooling as the pooling operator, because it
was reported in both works to give consistent performance
across different problems. Finally, as a very simple baseline,
we also compared against a “naive” MIL algorithm (denoted
as Simple-MIL in Table II), in which the bag label (i.e the
subject label) was propagated to all the bag instances and a
standard supervised model that classifies segments was trained.
The decision for the left-out subject was then computed as the
average of the model’s predictions for all the instances in their
bag.

For efficiency purposes, all the algorithms used for compari-

son (including the simple-MIL approach, which used the exact
same architecture as the Deep-MIL-FC algorithm) operated on
the frequency domain, that is, they accepted as input bags of
spectrograms, computed in the same way as in the frequency-
based MIL approach. For the BoF encoding we used a code-
book of size 128, while for the FV encoding we used a GMM
with 64 modes. In both cases, the base C hyperparameter of
the SVM was set to 1 and then balanced according to the class
prior. For the MI-SVM approach, we used a linear kernel with
C equal to 100, after experimenting with as small subset of the
data. Finally, for comparing against the MI-Net variants, we
used an underlying network architecture as close as possible
to the Deep-MIL-FC algorithm.

Table II presents the results of the LOSO experiment for
our approach, as well as the alternative algorithms of the
previous paragraph for each available evaluation scheme. Table
III presents the respective results for the RkF experiment.
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TABLE III: Evaluation results for the Repeated k-Fold experiment with k = 5 and bag length Kt = 1500. For each method
we report the average and the standard deviation of its performance metrics across 10 repetitions (and 5 random trials per
repetition) of the 5-fold experiment.

Evaluation on Model Precision Sensitivity Specificity F1-score

UPDRS16
(24 positive - 21 negative)

Simple-MIL 0.846 ± 0.017 0.356 ± 0.006 0.923 ± 0.010 0.514 ± 0.006
MI-Net-Simple [28] 0.827 ± 0.016 0.470 ± 0.010 0.888 ± 0.010 0.615 ± 0.011
MI-Net-DS [28] 0.754 ± 0.006 0.479 ± 0.004 0.821 ± 0.006 0.605 ± 0.003
MI-Net-Res [28] 0.751 ± 0.012 0.478 ± 0.011 0.819 ± 0.009 0.604 ± 0.010
BSN [29] 0.802 ± 0.021 0.426 ± 0.013 0.880 ± 0.014 0.574 ± 0.013
Deep-MIL-FC [19] 0.803 ± 0.007 0.474 ± 0.003 0.867 ± 0.006 0.613 ± 0.003
Deep-MIL-CNN (this paper) 0.778 ± 0.012 0.449 ± 0.009 0.853 ± 0.010 0.588 ± 0.008
BoF + SVM [31] 0.754 ± 0.027 0.247 ± 0.007 0.908 ± 0.013 0.388 ± 0.008
FV + SVM [31] 0.627 ± 0.011 0.460 ± 0.011 0.688 ± 0.014 0.551 ± 0.008

UPDRS20
(17 positive - 28 negative)

Simple-MIL 0.759 ± 0.015 0.457 ± 0.008 0.856 ± 0.008 0.595 ± 0.009
MI-Net-Simple [28] 0.617 ± 0.010 0.495 ± 0.007 0.814 ± 0.005 0.616 ± 0.007
MI-Net-DS [28] 0.554 ± 0.004 0.498 ± 0.003 0.757 ± 0.005 0.601 ± 0.002
MI-Net-Res [28] 0.559 ± 0.004 0.502 ± 0.006 0.759 ± 0.005 0.605 ± 0.004
BSN [29] 0.564 ± 0.008 0.422 ± 0.007 0.801 ± 0.009 0.553 ± 0.004
Deep-MIL-FC [19] 0.719 ± 0.006 0.600 ± 0.004 0.858 ± 0.004 0.706 ± 0.003
Deep-MIL-CNN (this paper) 0.723 ± 0.012 0.589 ± 0.004 0.863 ± 0.009 0.700 ± 0.002
BoF + SVM [31] 0.682 ± 0.019 0.315 ± 0.013 0.911 ± 0.007 0.468 ± 0.015
FV + SVM [31] 0.512 ± 0.013 0.529 ± 0.004 0.693 ± 0.016 0.600 ± 0.006

UPDRS21
(13 positive - 32 negative)

Simple-MIL 0.542 ± 0.015 0.456 ± 0.009 0.856 ± 0.008 0.595 ± 0.009
MI-Net-Simple [28] 0.471 ± 0.010 0.494 ± 0.009 0.774 ± 0.005 0.603 ± 0.008
MI-Net-DS [28] 0.423 ± 0.003 0.497 ± 0.004 0.725 ± 0.004 0.590 ± 0.002
MI-Net-Res [28] 0.428 ± 0.004 0.503 ± 0.008 0.727 ± 0.004 0.595 ± 0.005
BSN [29] 0.407 ± 0.005 0.398 ± 0.009 0.764 ± 0.008 0.524 ± 0.006
Deep-MIL-FC [19] 0.578 ± 0.005 0.631 ± 0.005 0.813 ± 0.004 0.710 ± 0.003
Deep-MIL-CNN (this paper) 0.579 ± 0.009 0.617 ± 0.006 0.818 ± 0.008 0.703 ± 0.003
BoF + SVM [31] 0.555 ± 0.019 0.335 ± 0.017 0.891 ± 0.006 0.487 ± 0.018
FV + SVM [31] 0.425 ± 0.011 0.575 ± 0.011 0.684 ± 0.013 0.625 ± 0.009

SP-expert annotations
(16 positive - 29 negative)

Simple-MIL 0.766 ± 0.017 0.528 ± 0.005 0.920 ± 0.008 0.671 ± 0.004
MI-Net-Simple [28] 0.820 ± 0.006 0.699 ± 0.005 0.915 ± 0.003 0.792 ± 0.004
MI-Net-DS [28] 0.744 ± 0.003 0.710 ± 0.008 0.866 ± 0.002 0.780 ± 0.005
MI-Net-Res [28] 0.754 ± 0.007 0.720 ± 0.014 0.870 ± 0.004 0.788 ± 0.009
BSN [29] 0.787 ± 0.020 0.626 ± 0.005 0.906 ± 0.011 0.741 ± 0.005
Deep-MIL-FC [19] 0.913 ± 0.003 0.809 ± 0.006 0.957 ± 0.002 0.877 ± 0.003
Deep-MIL-CNN (this paper) 0.955 ± 0.012 0.828 ± 0.024 0.979 ± 0.006 0.897 ± 0.015
BoF + SVM [31] 0.812 ± 0.021 0.399 ± 0.016 0.949 ± 0.006 0.561 ± 0.016
FV + SVM [31] 0.722 ± 0.017 0.684 ± 0.008 0.770 ± 0.016 0.724 ± 0.009

TABLE IV: The architectures used for the embedding function
φ. k denotes the kernel size, f the number of filters in the
convolutional layers and M the final embedding dimension.

Fully-connected CNN

Input xk 1× 76 spectrogram 3× 500 raw acceleration

Layer 1
Dense 76→ 256 Conv1D k = 8, f = 32

Leaky-ReLU (α = 0.2) Leaky-ReLU (α = 0.2)
Dropout p = 0.5 MaxPool k = 2

Layer 2
Dense 256→ 128 Conv1D k = 8, f = 32

Leaky-ReLU (α = 0.2) Leaky-ReLU (α = 0.2)
Dropout p = 0.5 MaxPool k = 2

Layer 3 Dense 128→M
Conv1D k = 16, f = 16
Leaky-ReLU (α = 0.2)

MaxPool k = 2

Layer 4
Conv1D k = 16, f = 16
Leaky-ReLU (α = 0.2)

MaxPool k = 2

Layer 5 Flatten
Dense 320→M

Output hk ∈ RM hk ∈ RM

We can see that the attention-based models outperform the

TABLE V: Architecture of the final classifier ρ. M denotes
the output dimension of the instance embedding function, φ.

Final classifier stage

Input z ∈ RM (see Equation 2)

Layer 1
Dense M → 32

Leaky-ReLU (α = 0.2)
Dropout p = 0.2

Layer 2
Dense 32→ 16

Leaky-ReLU (α = 0.2)
Dropout p = 0.2

Layer 3 Dense 16→ 2
2-way softmax

Output p(y|X)

alternatives under almost all evaluation schemes. Specifically,
when evaluation is performed on the signal processing expert
labels, which can be considered as the most correct, our
approach outperforms the alternatives by a significant margin.
Overall, the Deep-MIL-CNN model achieves the best perfor-
mance suggesting that it is feasible to obtain good performance
by training CNN feature extractors from scratch under the
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Fig. 2: Model performance (measured by the average F1-score
across 10 LOSO trials) as a function of the bag size

weakly-labeled scenario of multiple-instance learning. The
observed gap in performance between the signal processing
expert annotations and the medical expert ones, may appear
large but the observed discrepancy can be attributed to the
occurrence of label noise, the causes of which are discussed
in the last paragraph of Section IV-C.

We also examine how different bag size values affect the
classification performance. To this end we repeat the same
experiment as above while varying the bag size. The change
in performance as a function of the bag size Kt can be
seen in Figure 2. In general, we can see that reasonable
performance can be achieved with as little as 100 instances
per bag. Moreover, it is interesting to notice that at the low
bag size regime, the frequency domain approach achieves the
best performance. This can be explained by the fact that CNNs
require a large amount of data to be trained efficiently. Thus,
as the bag size increases, more data are presented to the
CNN and so the time domain approach catches up and finally
outperforms the frequency-based approach.

Finally, we wish to evaluate the ability of the attention-
based model to discover key instances within a bag. To that
end, we visualize the 2 instances with the highest αk and the
2 instances with the lowest αk, as identified by the Deep-
MIL-CNN model for a tremorous subject. As we can see in
Figure 3, the model correctly assigns large weights to instances
that contain tremorous episodes (sinusoidal components of
≈ 7Hz) and low weights to instances without such patterns.
This corroborates our hope that throughout its training, the
model learns to discover tremor-related patterns in large sets
of heterogeneous (with respect to the class label) instances,
without being explicitly presented with such patterns, as in
traditional supervised learning.

VI. DISCUSSION

In general, we can say that the proposed method exhibits
quite high classification performance and clearly outperforms
the alternative methods. One explanation for this, is that the
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Fig. 3: Visualization of the top-2 and bottom-2 instances
and their corresponding ak coefficients, as identified by the
CNN-based model for a tremorous subject. TOP ROW: The 2
instances with the largest ak for the given subject. BOTTOM
ROW: The 2 instances with the lowest ak for the given subject.

attention-based pooling scheme can accurately identify the
positive instances within a bag. In problems where the data
collection takes place in-the-wild and the targeted symptom is
of intermittent nature, the number of positive instances within
a bag can be very small. Thus, their contribution to the bag
representation may be lost when performing frequency-based
pooling (as in BoW or FV encoding) or mean pooling. On the
contrary, the positive instances in the case of a well-trained
attention-based pooling scheme will receive high weight,
thus contributing significantly to the final bag representation.
Combining the attention mechanism to a robust CNN feature
extractor can, therefore, lead to the very good detection results
we report. As a final note on this, we conjecture that the max
pooling operator should perform equally well, since, in theory,
it is insensitive to the small number of positive instances.
However, we can see in the experimental results that this is not
the case, suggesting that the attention-based pooling is more
suitable for the training process.

However, in a real world deployment, the method would
face a series of challenges, owing to the particular nature of
tremor and the consequently problematic labeling mechanism.
First of all, for evaluation purposes in such a scenario, any
predictions made by the model would be compared against the
opinions of the medical experts. If these opinions are expressed
in terms of a single UPDRS evaluation, the performance
of the algorithm will be underestimated, since, as we saw
in Section IV-C, a single UPDRS examination is prone to
producing erroneous labels, due to the tremor’s intermittence.
Hence, some of the model’s predictions, while in fact correct,
would be perceived as wrong. A possible countermeasure to
this, would be for the medical experts to re-evaluate these
“false positive” predictions. In such a scenario, the number of
subjects who will “waist” such a trip to the doctor, is expected
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to be very low, since the specificity of the model, as estimated
by our experiments, is very high (> 99%). High specificity
is a very desirable property for an algorithm that operates
as a warning system within a mobile phone environment and
therefore aims for unobtrusiveness, because, in such use cases,
a high false-positive rate is considered to be more detrimental
than a high false-negative rate.

A different kind of problem appears when a subject has
tremor in only one hand, but uses the unaffected hand to
answer their phone calls. In such cases, we cannot hope to
make a successful prediction, since all the data contributed by
the subject will not contain tremorous episodes. Yet, according
to the medical experts, the subject will belong to the positive
class. Thus, this would unavoidably result in a false negative
prediction. This is also true for cases where the subject makes
a call with a bluetooth set, es in the current version of the data
collection app we do not record whether bluetooth was used
during the call and therefore cannot filter it out.

Another point of concern, stems from the dataset itself. As
we can see in Table I, the ratio of Healthy controls over
PD patients in our dataset (14 Healthy and 31 PD), is very
different from the expected ratio in the general population
(about 1% of the population above 60 years old). This is a
result of the subject recruitment process, conducted by the
medical experts participating in the study. In future work, we
plan to re-evaluate our method on a larger dataset with many
more subjects, so as to mitigate this concern.

A limitation of a more technical nature stems from the
fact that the decision boundaries of the trained models tend
to be very sharp, with the predicted class probabilities being
biased towards very close to 0 or very close 1. This has the
unfortunate side-effect that the output of a model cannot also
serve as a confidence level of its prediction (which would
be possible if the model did output probabilities around 0.5).
One solution to this issue, that we consider as a step for future
work, would be to train an ensemble of models, for example
10, and use the average class probabilities of all the models
in the ensemble, as the final tremor probability for a subject.

Finally, in its current form, the proposed method operates on
accelerometer signals captured only during phone call events.
However, the overall idea is not limited to this data capturing
approach and could just as well be applied to IMU data
captured during more general interactions of the user with
their phone, for instance from when the user is typing on the
virtual keyboard of the device. Extending the current approach
to work in such cases, is another direction for future work.

VII. CONCLUSION

We presented a method for performing binary tremor detec-
tion from accelerometer data obtained in-the-wild, in which
each subject is represented by a bag of acceleration signal
segments and a single tremor label. A deep multiple-instance
learning approach that combined feature extraction and a
pooling scheme inspired by the attention mechanism, was
used, in order to identify the key segments within each bag.
The extensive experiments performed on a dataset of 45
subjects, indicate that the proposed method can indeed identify

such instances and, therefore, successfully handle the in-the-
wild setting of the recorded signals. Moreover, our method
can be trained efficiently using only the coarse subject-level
annotations available, thus efficiently handling the problem of
weak supervision. Finally, it leads to dramatically improved
performance over the examined alternatives.
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