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Abstract— In this paper, we propose an end-to-end neural
network (NN) architecture for detecting in-meal eating events
(i.e., bites), using only a commercially available smartwatch.
Our method combines convolutional and recurrent networks
and is able to simultaneously learn intermediate data represen-
tations related to hand movements, as well as sequences of these
movements that appear during eating. A promising F-score of
0.884 is achieved for detecting bites on a publicly available
dataset with 10 subjects.

I. INTRODUCTION

Obesity is the result of imbalance between energy intake
and energy expenditure [1]. While the use of wearable de-
vices for measuring energy expenditure in terms of physical
activity is now common, the usage of wearable devices
for measuring eating behavior is less widespread. In most
settings (clinical or otherwise), eating behavior is monitored
through self-reported food diaries, which can be highly
inaccurate [2]. In addition, there are relevant meal parameters
which cannot be provided through self-reports and therefore
must be measured, such as eating rate or number of bites
during the course of a meal [3].

Numerous methods using different types and number of
sensors have been proposed to objectively monitor eating
behavior. Examples include weight scales [4], visual sensors
[5], the combination of audio and motion sensors [6] [7]
or the combination of multiple motion and gesture sensors
[8]. Some of these methods automatically identify eating
occurrences (meals or snacks), while others measure in-
meal eating behavior. They achieve high effectiveness by
combining multiple and/or sophisticated sensors, however
in some cases this use of additional devices or sensors can
reduce usability and hurt compliance.

Approaches that make use of the inertial sensors of a single
smartwatch already worn by the user can potentially be easier
to use. The work presented in [9] proposes a combination
of spectral segmentation, aggregation and Random Forest
classification to detect eating episodes with an average F-
score of 0.75. The authors of [10] present a method that uses
Hidden Markov Models (HMMs) to capture the temporal
dependencies of hand gestures leading to a bite. Their
method achieves an accuracy of 0.965 when evaluating pre-
segmented sequences; no results are reported for detecting
bites in a continuous fashion.

In our previous work [11] we characterized the food
intake cycle as a sequence of specific hand micromovements
(e.g. pick food movement, food to mouth movement) and
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proposed a two-step approach for detecting eating events
during a meal by means of a single smartwatch. More
specifically, we represented each micromovement as a score
vector of 10 Support Vector Machines (SVM), and then used
a Long-Short Term Memory (LSTM) network to capture
the temporal evolution of the micromovements. The LSTM
output was used to identify whether any given sequence is
an intake cycle or not, and achieved a Leave-One-Subject-
Out (LOSO) F-score of 0.892 in a dataset of 10 subjects.
The main drawback of this method is the need for detailed
information about hand micromovements for training the
SVM detectors of the first step, which requires significant
annotation effort.

Motivated by the recent success of end-to-end learning
on timeseries data, this paper explores the possibility of
using a neural network architecture for detecting eating
events during a meal by using the raw accelerometer and
gyroscope measurements of an off-the-shelf smartwatch. In
the recent years, end-to-end learning approaches that jointly
train the convolutional and recurrent parts of Deep Neural
Networks (DNNs) have been successfully applied in practical
recognition problems such as multi-sensor wearable activity
recognition [12] and audio-based emotion recognition [13].
Despite the obvious benefit of the Convolutional Neural
Network’s (CNN) ability to generate problem-specific data
representations, the authors of [12] point out the advantages
of using LSTM cells to capture the temporal dependencies
of the convolutional activations in contrast to an approach
that is based solely on CNNs.

Based on these observations, in our experiments we ex-
plored both the use of CNN-only architectures and the com-
bination of CNNs and LSTMs. Evaluation is performed on
our publicly available Food Intake Cycle (FIC)1 dataset, and
the results show that the combination of CNN with LSTM
significantly outperforms CNN-only architectures. Further-
more, the proposed end-to-end-approach achieves similar
performance to our previous, state-of-the-art method [11],
without the need for micromovement annotations during
training.

The rest of this paper is organized as follows. Section II
provides the details of the processing and learning pipeline.
Section III describes the dataset, the conducted experiments
and their results. Finally, Section IV concludes the paper.

II. END-TO-END LEARNING OF EATING EVENTS

The term end-to-end is used to describe a learning machine
that, when given raw information, is able to extract problem-

1http://mug.ee.auth.gr/intake-cycle-detection
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Fig. 1: Pipeline of the proposed approach. Initially, the accelerometer and gyroscope signals of length N are processed by
the convolutional part of the architecture producing the M × 128 intermediate output x, where M = N

4 due to the temporal
max pooling operations. Then, the recurrent part of the network produces a probability pi for each of the M time slices of
x. The LSTM’s output and the cell state for each of the M moments are represented by hi and ci respectively.

specific features, as well as to model the evolution of the
extracted features across time. Instead of making use of the
explicit knowledge of hand micromovements leading to an
eating event, the work presented here combines Convolu-
tional and LSTM networks into a single end-to-end learning
mechanism. Figure 1 presents the overall pipeline.

A. Data pre-processing
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synchronized x, y and z streams of the accelerometer and
gyroscope measurements captured during a meal session. N
is defined as N = t · fs, where t is the meal’s duration in
sec and fs the sensors’ sampling frequency in Hz. A meal
can be then represented as an N × 6 data matrix S defined
as S = [aTx a
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T
z ] and a N ×1 vector l indicating

the label for every sample.
Initially, we smooth each sensor stream by applying a 5-th

order median filter to each column of S. Then, a high pass
FIR filter with a 512 tap-delay line and a cut-off frequency
of 1 Hz is individually convolved with the anx , any and
anz components of S in order to attenuate the acceleration
components caused by the earth’s gravitational field. Prior
to any further processing, S is column-wise standardized by
subtracting the mean and dividing by the standard deviation.
The result of this process is the N × 6 matrix S′.

B. End-to-end network architecture

The proposed end-to-end architecture consists of two
networks, a convolutional and a recurrent, that are jointly
trained by back-propagation using the same cost function.
The purpose of the convolutional network is to extract data
representations related with short-duration movements of the
hand; the recurrent network models the evolution of hand
movements leading to an eating event.

The CNN is comprised of three 1-D convolutional layers;
the first two being followed by a temporal max pooling
operation with a decimation factor of 2. As the depth of the
network increases, the number of filters in each convolutional
layer increases as well. More specifically we set 32, 64 and
128 as the number of filters for each layer. The filters’ length

were set to 5
fs , 3

fs
2

and 3
fs
4

sec. The Rectified Linear Unit
(ReLU) was used as the non-linearity for the convolutional
activations.

The recurrent network consists of a single LSTM layer
with 128 cells; however similar performance was obtained
with two LSTM layers of 128 cells each (see the experiments
of Section III). The hard sigmoid function defined as σ(x) =
max(0,min(1, x·0.2+0.5)) was selected as the activation of
the recurrent steps. During training the output of the network
is obtained by processing the last 128-dimensional output of
the LSTM with a fully connected layer with a single neuron
and the sigmoid function as the non-linearity. The output of
the network represents the probability that the given sequence
ends with an eating event. As a form of regularization we
applied a 20% dropout chance on the LSTM inputs, a 50%
dropout chance on the units of the LSTM state during the
recursion steps and a 50% dropout chance to the inputs of
the fully connected layer.

For training examples we extracted parts of S′ (Section
II-A) using the sliding window approach. In more detail, the
length wl and the step ws of the sliding window in samples
are defined as wl = 5 · fs and ws = 0.05 · fs (5 and
0.05 sec respectively). The label associated with each section
corresponds to the label at the end of the extraction window.
This process results in a collection of wl × 6 sequences,
each coupled with a single label as the target. We trained the
network using the binary cross-entropy cost function coupled
with the RMSprop optimizer with a learning rate of 10−3 for
16 epochs and a mini-batch size of 128 sequences.

During inference we modified the recurrent network in
order to fully benefit from the LSTM’s memory regarding
past inputs. More specifically, the LSTM layer is modified
to propagate all intermediate outputs (not just the last, in
contrast with the training network) to the fully connected
layer. Additionally, the fully connected layer is modified to
provide a prediction p for each of the intermediate outputs
of the LSTM layer. This means that when an N × 6 data
frame representing a complete meal is fed to the evaluation
network, the state of the LSTM is propagated throughout the
entire meal and the network outputs a N

4 × 1 (downsampled
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Fig. 2: The figure depicts four representatives examples of
the evaluation scheme used to calculate performance metrics.

by 4 due to temporal max pooling) prediction vector p.

C. Detection

Given the trained network and a data matrix S′ that
represents a meal session, eating events are detected by
processing the network’s predictions p using the following
steps. Initially, we use a 5-th order median filter to smooth
any short and sudden changes in p. The sequence y is
then obtained by convolving p with an one-dimensional
edge detector h, defined as h = [1, 2, 3, 0,−3,−2,−1]T .
We then normalize y in [0, 1] and the y′ is subsequently
formed by replacing with zeros the elements of y that are
below a threshold Ty . Finally, eating events are detected by
performing a local maxima search in y′ with a minimum
distance between peaks set at 1 sec.

III. EXPERIMENTS & RESULTS

A. Dataset

The data used in this study belong in our publicly available
FIC dataset. The dataset contains Inertial Measurement Unit
(IMU) recordings of 10 meal sessions originating from 10
unique subjects using a Microsoft Band 2 smartwatch, in the
restaurant of Aristotle University of Thessaloniki (Figure 3).
Both the accelerometer and gyroscope streams are synchro-
nized and resampled at a sampling frequency fs equal to
100 Hz. FIC also provides detailed annotations regarding
the start and end moments of specific non-overlapping hand
micromovements that span the entire length of a meal. More
specifically, the micromovements contained in FIC are: i)
pick food (hand manipulating utensil to pick food from plate),
ii) upwards (upward motion of the hand towards the mouth),
iii) mouth (hand inserts food in mouth), iv) downwards
(downwards motion of the hand, away from the mouth),
v) no movement and vi) other movement for describing any
micromovement not belonging in any of the aforementioned
ones. Additional technical details about FIC can be found in
the provided hyperlink.

FIC’s micromovement annotations are not used in our end-
to-end setup, but we adopt the definition of the intake cycle as
in [14] (i.e. as a sequence of hand micromovements starting
with the pick food, ending with downwards and containing
a mouth micromovement). We populated each meal’s label
vector l with positive values only for 0.1 sec before and after
the end of an intake cycle, and negative values everywhere
else. More formally,

ln =

{
+1 if tigt − 0.1 ≤ lnt ≤ tigt + 0.1

-1, else

Fig. 3: Stills from the video sequences used to annotate the
FIC dataset. The figure reflects the various eating styles and
food types in the dataset.

where tigt is the timestamp at the end of the ith intake cycle
in sec and lnt the timestamp associated with the nth element
of l.

B. Evaluation Scheme

Given the detected eating events and the ground truth
intervals of a meal session, the method’s performance is
evaluated by calculating the true positive (TP), false positive
(FP) and false negative (FN) metrics as in [11]. An overview
of the evaluation scheme is presented in Figure 2. Fundamen-
tally, the first detection point in a ground truth interval is
consider as a TP, whereas any excess detection points in the
same interval count as FPs. Additionally, detection points
not belonging in any interval also count as FPs. Finally,
ground truth intervals with no detection points count as
FNs. In the context of this study we allowed any detections
within a tolerance of 0.5 sec past the end of an interval
to count as TPs (given that no other detections for this
interval exist). Furthermore, unlike [10] where the authors
evaluated the performance of their approach against pre-
segmented sequences, in this work evaluation is carried out
against continuous (i.e. non-segmented) sequences.

C. Experiments

As a baseline for comparing our method we used our
previous works of [14] and [11], both making use of the
explicit knowledge of each of the micromovements leading
to an eating event. The former work (M-I) uses two HMMs
to model the decisions of a multiclass SVM and make
predictions regarding whether or not a given sequence is an
intake event or not. The short description of the latter (M-II)
approach is already provided in Section I.

We also compare the proposed network architecture with
different NN architectures that don’t make use of the knowl-
edge regarding micromovements. Initially, we compare the
performance against an architecture that only uses convo-
lutional and fully connected layers and approximately has
the same number of learnable parameters. The convolutional-
only (A-I) architecture consists of 5 convolutional layers and
1 fully connected layer with a single neuron. On the same



TABLE I: Micromovement agnostic architectures. The nota-
tion Conv (N×M ) indicates a 1D convolutional layer with N
filters each with a length of M samples, Pool (K ↓) indicates
the max pooling operation with a decimation factor of K,
LSTM (H) indicates an Long-Short Term Memory layer with
H hidden cells and Dense (Q) represents a fully connected
layer with Q neurons.

ID Proposed A-I A-II

Layers

Conv (32× 5)
Pool (2 ↓)
Conv (64× 3)
Pool (2 ↓)
Conv (128× 3)
LSTM(128)
Dense (1)

Conv (32× 20)
Conv (32× 20)
Pool (2 ↓)
Conv (64× 10)
Conv (64× 10)
Pool (2 ↓)
Conv (128× 4)
Dense(1)

Conv (32× 5)
Conv (32× 5)
Pool (2 ↓)
Conv (64× 3)
Conv (64× 3)
Pool (2 ↓)
Conv (128× 3)
LSTM(128)
LSTM(128)
Dense (1)

# para-
meters 163,617 134,849 312,705

TABLE II: Evaluation results. The micromovement column
indicates whether or not the approach uses knowledge from
hand micromovements.

micromovements ID Prec Rec F-score

7 Proposed 0.852 0.924 0.884
7 A-II 0.824 0.860 0.839
7 A-I 0.675 0.699 0.676
3 M-II 0.875 0.911 0.892
3 M-I 0.757 0.881 0.814

note as the proposed architecture, A-I includes two temporal
max pooling operations after the second and the fourth con-
volutional layers. Finally, we compare the proposed network
with a deeper version (A-II), that is the same as the A-I
architecture with the exception of two LSTM layers prior to
the fully connected layer. In order to avoid overfitting, both in
A-I and in A-II the fully connected layer discards activations
from the previous layer with a probability of 50%. Table I
aggregates the information regarding all micromovement ag-
nostic neural network architectures. In order to measure the
cross-subject performance, all experiments were conducted
using the LOSO cross validation scheme. By experimenting
with a small part of the dataset, the Ty parameter was
selected to be 0.4. Table II presents the precision, recall
and F-score metrics calculated according to the evaluation
scheme of Section III-B. The presented results are averaged
across all LOSO iterations.

Results show that the CNN-only architecture (A-I) un-
derperforms when compared with either micromovement-
based or micromovement-agnostic approaches, indicating
the need for modeling of time-evolving and variable in
length phenomena that occur during eating. Additionally,
the performance of both the proposed and the deeper A-II
architectures surpass the M-I approach; however only the
shallower proposed architecture achieves almost identical
state-of-the-art performance as M-II.

IV. CONCLUSIONS

In this paper we presented an end-to-end neural network
approach for detecting eating events during the course of
meal using raw data from the accelerometer and gyroscope
sensors commonly found in commercially available smart-
watches. In addition, experimental results show that the
proposed end-to-end approach yields state-of-the-art perfor-
mance, despite not having knowledge of hand micromove-
ments leading to an eating event during training.
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