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Abstract— Automated and objective monitoring of eating
behavior has received the attention of both the research
community and the industry over the past few years. In this
paper we present a method for automatically detecting meals in
free living conditions, using the inertial data (acceleration and
orientation velocity) from commercially available smartwatches.
The proposed method operates in two steps. In the first
step we process the raw inertial signals using an End-to-
End Neural Network with the purpose of detecting the bite
events throughout the recording. During the next step, we
process the resulting bite detections using signal processing
algorithms to obtain the final meal start and end timestamp
estimates. Evaluation results obtained from our Leave One
Subject Out experiments using our publicly available FIC and
FreeFIC datasets, exhibit encouraging results by achieving an
F1/Average Jaccard Index of 0.894/0.804.

I. INTRODUCTION

Automated and objective monitoring of one’s eating be-
havior has the potential of playing an important role both
as a prevention mechanism, by tracking everyday dietary
habits, as well as a medical tool, by monitoring patient
compliance to prescribed dietary goals [1]. Currently, the
most commonly used method for monitoring eating behavior
is the food diary, where subjects report their eating habits.
Despite the fact that food diaries are easy to use and provide
useful information, most of the time are highly inaccurate
[2]. The need for an objective way of monitoring the eating
behavior of individuals ignited the interest of the research
community and the industry to pursue automated solutions.

Over the past few years, several methods that involve
various sensor types have been proposed in the literature. The
majority of these methods aim at measuring eating behavior
(such as number of bites, eating speed and total food intake)
during a meal session. Recent examples are [3] and [4] which
involve the usage of wrist-mounted inertial sensors, [5] which
uses a weight scale and [6] that makes use of a camera. The
downside of these approaches is that require from the user
to enable the capturing mechanism prior to every meal and
disable it after the end of it.

Automated detection of eating occurrences in free living
conditions is a more challenging problem, due to the wide
variety of non-eating activities and movements that can lead
to false positive detections. It is also a less studied problem.

The work of [7] presents a novel sensory system integrated
into a pair of glasses that involves a piezoelectric strain
sensor and an accelerometer sensor. In their experiments they
achieve an average F1 score of 0.998 when differentiating
between food intake and activity level by using two-stage
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classification scheme involving Support Vector Machines
(SVMs) and Decision Trees. A similar work presented in
[8], proposes the integration of an Electromyography (EMG)
sensor on a pair of eyeglasses towards the detection of meals
in free-living environments along with the recognition of
food hardness. The authors report a meal detection accuracy
of 0.95 in their dataset of 10 subjects.

The authors of [9] explore the feasibility of using the
camera of typical smartphone worn around the participants
neck as a necklace in order to detect moments of eating in
free-living environments. In their dataset of 5 participants
providing data over the course of 3 days, the authors report
an eating moment recognition accuracy of 0.896.

The work of [10] proposes a solution that uses the
accelerometer and gyroscope signals of a novel watch-like
device with the aim of classifying periods of everyday life
as eating or non-eating. The idea behind their approach is
that meals tend to be preceded and succeeded by periods
of vigorous wrist motion. In their experimental section the
authors report an accuracy of 0.81 for eating detection in a
large dataset of 43 subjects.

Motivated by the above, in this paper we propose an
approach for detecting meal start and end times in the wild
by using the inertial data from a typical smartwatch. The
proposed approach is based on our previous work [11] where
we presented an end-to-end learning mechanism capable of
detecting bite events from in-meal data. In this work we
extend [11] by incorporating free-living data and we present
how bite predictions can lead to the detection of meals.
Experimentation using our newly-introduced FreeFIC dataset
that contains 16 free-living recordings from 6 subjects yield
an encouraging F1 score of 0.894. The dataset is publicly
available on the Multimedia Understanding Group site1.

The rest of the paper is organized as follows. Section
II presents the proposed meal detection algorithm. Section
III describes the dataset, the experiments and the adopted
evaluation scheme. Finally, the paper concludes with the
conclusions in Section IV.

II. MEAL DETECTION ALGORITHM

A. Signal pre-processing

Consider ax, ay , az , gx, gy , gz , the synchronized x, y and
z accelerometer and gyroscope signals respectively, captured
during a single recording. For a single point, indexed by i,
x(i) =

[
ax(i), ay(i), az(i), gx(i), gy(i), gz(i)

]>
contains the

instantaneous inertial measurements. The complete recording
can be then represented by r =

[
x(1), . . . ,x(M)

]
, with i =

1Available at: mug.ee.auth.gr/intake-cycle-detection
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1, . . . ,M . The length of the recording, in samples, is defined
as M = t · fs, where t is the recording duration in seconds
and fs the sampling frequency of the sensors in Hz.

We initially smoothed each of the triaxial acceleration and
gyroscope streams by convolving them with a moving aver-
age filter. Experimentation with a filter length corresponding
to 0.25 seconds (0.25 ·fs samples) led to satisfactory results.
In addition, since the accelerometer measurements include a
component due to the Earth’s gravity in addition to voluntary
movements, we convolved each of the ax, ay and az streams
with a high-pass Finite Impulse Response (FIR) filter with
a cut off frequency of 1 Hz and a length corresponding to
5.12 seconds (5.12 · fs samples).

B. Bite detection

We detect the bite events contained in the raw data series
r using our end-to-end Neural Network (NN) architecture
[11] that involves both convolutional and recurrent layers
which we summarize here. This end-to-end NN makes use
of convolutional layers to extract problem-specific features,
as well as a Long-Short Term Memory (LSTM) layer to
model the evolution of the extracted features over time.
The convolutional part of the NN is comprised of three 1D
convolutional layers, with the first two being followed by
max pooling operations that decimate the output by a factor
of 2. The output of the third convolutional layer is then
sequentially processed by the LSTM layer. The final output
of the network is obtained using a fully connected layer with
a single neuron. Table I summarizes the NN architecture.

Training examples are obtained by extracting parts of the
raw sensor data series r using a sliding window with length
wl and step ws. The label paired to each training example
corresponds to the label associated with the sample at end
of the sliding window. To avoid issues with class imbalance
since the negative class is much more frequent, each batch
contained an equal amount of positive and negative examples
selected at random. The total number of examples in the
batch sums to 768. Finally, the network is trained for 4
epochs2 by minimizing the cross-entropy loss using the
RMSprop optimizer and a learning rate of 10−3.

Bite detection is initially carried out by processing a
previously unseen recording r using the NN to obtain the
predictions p of length N = M

4 (decimated by a factor of
4 due to the pooling operations, additional details about in-
ference can be found in [11]). We then perform thresholding
in p by replacing with zeros the elements that are below
a probability threshold λp. By performing a local maxima
search in p, using a minimum distance of 2 seconds between
consecutive peaks, we obtain the set of detected bites B =
{b1, . . . , bL}, where each bl with l = 1, . . . , L, corresponds
to the timestamp associated with a local maximum.

C. Meal detection

Given the set of detected bites B for a recording r,
estimation of meal start and end times starts by constructing

2An epoch ends when all negative examples are used once in the
optimization process.

TABLE I: End-to-end bite detection architecture [11]. Table
provides the numerical parameters and the activation func-
tion, where applicable, used in each layer.

Layer Dim. Activation Details

1D Conv 32× 5 ReLU Num of filters × filter len
Max Pool 2 ↓ – Decimation factor
1D Conv 64× 3 ReLU Num of filters × filter len
Max Pool 2 ↓ – Decimation factor
1D Conv 128× 3 ReLU Num of filters × filter len
LSTM 128 Hard sigmoid Num of hidden cells
Dense 1 Sigmoid Num of neurons

# params 163, 617

the timeseries s(n) with n = 1, . . . , N , as in Equation 1.

s(n) =

{
1, if n = b · fs4 ∀ b ∈ B
0, otherwise

(1)

Essentially, s spans the entire recording duration and is
positive at the moments of bite detections and zero else-
where. Next, s is convolved with a Gaussian filter with a
length and σ that correspond to 240 and 45 seconds ( 240·fs4

and 45·fs
4 samples), respectively. This process smooths s

and closes the gaps (similar to the morphological closing
operation) between groups of bites that are distant from each
other, which is often the case in long meals. The timeseries s
is then thresholded by replacing with zeros the elements that
are lower than a threshold λs and with ones the elements
that surpass it.

Subsequently, we convolve the binary s timeseries with
the differentiation filter h to obtain the N -length series d.
Filter h is selected to have a sidelobe length corresponding
to 1 second ( fs4 samples) and is constructed as: h =

[1, 2, . . . , fs4 , 0,−
fs
4 , . . . ,−2,−1].

An initial estimate of the meal start and end times is
achieved by performing a local maxima search in |d| and
then pairing consecutive peaks to isolate stable regions. As a
result of this process we obtain the set of initial meal intervals
Q = {q1, . . . , qV } where each interval qi = [tli, t

r
i ] contains

the left-most and right-most edges between stable regions,
tli and tri respectively, with i = 1, . . . , V . In addition we
use the bite estimates from B to discard the intervals qi that
include less than 3 bites in their duration. The final estimate
of the meal start and end times is obtained by iteratively
merging the elements of Q that are within 180 seconds of
each other. Figure 1 presents the steps of the meal detection
process. Looking at Figure 1-e) one can consider that a
subsequent “short meal” rejection procedure would reduce
false detections.

III. EXPERIMENTS & EVALUATION

A. Dataset

In this work we make use of two datasets. The first is
our publicly available Food Intake Cycle (FIC) dataset that
includes 21 recordings from within-meal sessions belonging
to 12 subjects. The second is the newly introduced FreeFIC
dataset that includes 16 in the wild recordings belonging to
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Fig. 1: Figure depicting the steps of the meal detection algorithm. In all figures the horizontal axis is aligned and spans the
entire recording duration, as well as the true meal interval is marked with a green background. In detail: a) shows the raw
ax stream, b) the dot markers represent the detected bites (set B) made by the NN (Section II-B), c) shows the application of
the Gaussian filter and the resulting s timeseries, d) and e) show the initial and the final meal estimates (set Q), respectively.

TABLE II: FIC and FreeFIC dataset statistics.

Dataset Type # Mean (s) Std (s) Median (s) Total (s)

FIC Meal sessions 21 703.56 186.18 717.88 14, 774.80

Food Intake Cycles 1, 332 4.52 3.22 3.55 6, 023.07

FreeFIC In the wild sessions 16 17, 398 4, 884 16, 489 278, 378

Meals 17 1, 148 502 1, 065 19, 520

6 subjects. In contrast to FIC sessions where the average
recording duration is 703 seconds, FreeFIC recordings span
a significantly larger portion of the day (17, 398 seconds on
average) including free-living activities and contain at least
one meal. In both datasets the recorded data consists of tri-
axial accelerometer and gyroscope measurements originating
from a commercial smartwatch.

Participants in FreeFIC were advised to wear the smart-
watch, to the wrist that they typically use to operate the
fork and the spoon, well-ahead before having their meal and
continue wearing it afterwards until the smartwatch reached
critical battery levels. Apart from noting the start and end
moments of their meals to the best of their abilities (with
less than a minute resolution), no other instructions were
given to the participants.

Annotations in FIC include the start and end moments of
each food intake cycle (i.e. bite event) during the meal, while
annotations in FreeFIC include the start and end moments of
meals throughout the day. For the raw signal recordings r in
the FIC dataset we associated each x(i) within 0.1 of the
end of a food intake cycle interval with a positive label, all
other samples are assigned labels from the negative class.
Regarding the raw signal recordings r from the FreeFIC
dataset, we associated each x(i) outside of the meal intervals
with a label from the negative class. Table II presents the

TN TNTNFPFPTPTPTPTPTPTPTPFNFNFNTNTNTN TN TNTNFPFPTPTPTPTPTPTPTPFNFNFNTNTNTN

Union

Intersection

Detected mealDetected meal

True mealTrue meal

Fig. 2: Example presenting the calculation of performance
metrics using the adopted evaluation scheme.

statistics of the FIC and FreeFIC datasets.

B. Experiments & evaluation methodology

For our experiments, we extracted positive and negative
examples from the FIC dataset using a wl and ws that
correspond to 5 and 0.05 seconds (5·fs and 0.05·fs samples),
respectively. We also extracted negative examples from the
FreeFIC dataset using a less exhaustive, due to FreeFIC
recordings being significantly larger in duration, w′s equal
to 1 second (1 · fs samples). Furthermore, we resampled
recordings in both datasets to a constant sampling frequency
fs = 100 Hz. We set the probability threshold λp (from
Section II-B) to 0.89 according to [3]. Finally, experimenting
with a small part of the FreeFIC dataset (four out of the



TABLE III: Leave One Subject Out meal detection results.

Method TP FP TN FN Precision Recall Specificity F1 Average J Index

Proposed 432, 917 47, 187 6, 424, 247 55, 083 0.901 0.887 0.992 0.894 0.804
DBSCAN 436, 955 84, 460 6, 386, 974 51, 045 0.838 0.895 0.986 0.865 0.752

sixteen recordings selected at random) we set threshold λs
(from Section II-C) to 5 · 10−4 as this value achieved the
highest F1 score for that small subset.

The purpose of our experiments is to measure the inter-
subject effectiveness of our approach. To this end, we trained
the end-to-end bite detection network using data from FIC
and FreeFIC in a Leave One Subject Out (LOSO) fashion
by iteratively leaving out recordings from both datasets
belonging to each unique subject. Each model was then used
to produce the bite estimates for the recordings of the left
out subject and forward them to the proposed meal detection
algorithm.

In addition to the meal detection experiment, we per-
formed a LOSO experiment investigating the differences
in bite detection performance when including recordings
from both datasets (FIC and FreeFIC) in the network’s
training process against only recordings from the FIC dataset.
Evaluation is performed on the left out meal sessions from
the subjects in FIC.

For comparison purposes we evaluate the performance
of the state-of-the-art Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm towards the
detection of meals in FreeFIC. This is motivated by [4]
where the authors use density-based clustering to detect the
final bite events from a continuous stream of bite decisions.
Meal detection using DBSCAN is performed by providing
as input the timestamps of the detected bites (set B, Section
II-B). To be in par with the proposed approach and achieve a
fair comparison we tuned the clustering algorithm according
to the proposed one (Section II-C; specifically, we used a
minimum number of samples equal 3 (bites) and a maximum
distance between samples (or eps) of 180 seconds. The final
meal estimates are obtained by pairing the extremums of
each produced cluster.

By considering the complete recording timeline, as well as
that each point in time belonging to a qi interval corresponds
to the positive class (i.e. meal) while the rest correspond
to the negative class (i.e. non-meal), we can exhaustively
calculate the true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) metrics. Moreover,
we measured the overlap of the estimated meals against
the true meal intervals using the Jaccard Index defined as
J (Q,T ) = |Q∩T |

|Q∪T | , where Q and T are the estimated and
true meal intervals respectively. An example of how metric
calculation is performed is depicted in Figure 2.

C. Results & discussion
Table III presents the LOSO meal detection results ob-

tained by the proposed and the DBSCAN approaches. The
results initially point out that the presented approach out-
performs the density-based clustering approach by achieving

an F1/Average J Index of 0.894/0.804 against 0.865/0.752.
This difference in performance stems from the observation
that DBSCAN produces almost twice the amount of FPs
despite yielding slightly more TPs and slightly less FNs
than the proposed approach. Regarding the cross-subject
bite detection performance, introducing examples from both
FIC and FreeFIC datasets in the network’s training process
resulted in a similar performance when compared to using
examples solely from the FIC dataset, with F1 scores of
0.872 and 0.884 respectively.

IV. CONCLUSIONS

In this work we presented an algorithm for detecting
meals in the wild using the inertial data (acceleration and
orientation velocity) of a typical smartwatch. Evaluation is
performed in a LOSO fashion using our newly introduced
and publicly available FreeFIC dataset, where the proposed
approach yields an F1/average Jaccard Index of 0.894/0.804.
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