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Abstract—Overweight and obesity are both associated with
in-meal eating parameters such as eating speed. Recently, the
plethora of available wearable devices in the market ignited the
interest of both the scientific community and the industry towards
unobtrusive solutions for eating behavior monitoring. In this
paper we present an algorithm for automatically detecting the
in-meal food intake cycles using the inertial signals (acceleration
and orientation velocity) from an off-the-shelf smartwatch. We
use 5 specific wrist micromovements to model the series of
actions leading to and following an intake event (i.e. bite).
Food intake detection is performed in two steps. In the first
step we process windows of raw sensor streams and estimate
their micromovement probability distributions by means of a
Convolutional Neural Network (CNN). In the second step we
use a Long-Short Term Memory (LSTM) network to capture
the temporal evolution and classify sequences of windows as
food intake cycles. Evaluation is performed using a challenging
dataset of 21 meals from 12 subjects. In our experiments
we compare the performance of our algorithm against three
state-of-the-art approaches, where our approach achieves the
highest F1 detection score (0.913 in the Leave-One-Subject-Out
experiment). The dataset used in the experiments is available at
https://mug.ee.auth.gr/intake-cycle-detection/.

Index Terms—biomedical signal processing, wearable sensors

I. INTRODUCTION

OVERWEIGHT and obesity is the consequence of energy
imbalance or, in other words, the result of the positive

difference between energy intake and energy expenditure over
a prolonged period of time [1].

In clinical settings, eating habits are typically recorded
in food diaries. Although food diaries can provide relevant
information about one’s eating behavior, they can be very
inaccurate [2], [3] and cannot measure parameters of healthy
eating behavior such as eating speed [4]. Objective measure-
ment and monitoring of eating behavior is therefore important
for understanding individual behavior, for achieving weight
loss and for preventing obesity.

Driven by the need for tools to objectively measure eat-
ing parameters, researchers have pursued numerous technical
approaches which can be found in recent literature [5], [6],
including methods that detect bites, chewing, or swallowing.

Methods that approach food intake monitoring via the
chewing mechanism are capable of detecting chewing episodes
[7]–[11] and estimating the weight of the bite [12]. Such
methods typically make use of acoustic sensors such as in-
ear microphones [7]–[9], strain sensors [10], or a combination
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of sensors such as accelerometry and audio [11]. Approaches
based on swallowing detection measure food intake by cap-
turing the movements of the muscles located in the pharynx
and esophagus. Multiple solutions have been proposed in the
literature that successfully make use of piezoelectric [13],
physiological [14] and acoustic [15], [16] sensors.

Besides wearable-based approaches, eating behavior mon-
itoring methods have also been proposed that make use of
more complex sensors such as cameras. Such methods are
capable of estimating the volume of the food portion [17],
[18], recognizing food types [19], [20] and estimating caloric
intake [21]. The use of plate scales for measuring the total
food intake, the eating rate and the food intake curve has also
been proposed, e.g. in [22].

In addition to measurement effectiveness, an important and
often overlooked aspect of eating behavior monitoring with
wearable sensors is usability and comfort. Sensor obtrusive-
ness and usage complexity may lead to low compliance [23]
with sensors being partially used, or not used at all.

In this work we present an algorithm for monitoring the
in-meal eating behavior by detecting the food intake (i.e.
bite) moments using the acceleration and orientation velocity
signals from a single off-the-shelf smartwatch. To achieve this,
we apply a Convolutional Neural Network (CNN) to windows
of raw sensor streams to estimate the probability distribution of
five wrist micromovements that correspond to the wrist motions
that typically appear when taking a bite. Subsequently, we
model the temporal evolution of the windows leading to a bite
event by means of a Long-Short Term Memory (LSTM) net-
work. We evaluate our algorithm in our challenging, publicly-
available Food Intake Cycle (FIC) dataset that contains 21
complete meal sessions from 12 unique subjects, recorded
under real life conditions. In addition, the performance of our
proposed algorithm is compared against three state-of-the-art
approaches [24]–[26].

The rest of the paper is organized as follows. Section II
presents the related work regarding the detection of eating
moments using wrist-mounted inertial sensors. Section III
introduces the terminology and present the proposed food
intake cycle detection algorithm. Section IV describes the
dataset, the conducted experiments, the evaluation scheme and
the limitations of our approach. Finally, the paper concludes
with Section V.

II. RELATED WORK

Detection of food intake using inertial signals from wrist-
mounted sensors enables unobtrusive, low-cost solutions for
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food intake monitoring that have received a lot of attention
recently. Such approaches focus on recognizing individual or
combinations of hand gestures that are part of the process of
delivering food from the plate to the mouth area.

One of the most well-known approaches is the one proposed
by Dong et al. [24] (also used to produce the results reported
in [27]). In their study, the authors solely use a single channel
of the gyroscope sensor with the purpose of detecting the
characteristic roll motion of the wrist that typically appears
when performing a bite. The algorithm relies on four parame-
ters that control: a) the positive angular velocity threshold that
needs to be surpassed for the initial roll motion of the wrist, b)
the corresponding negative angular velocity threshold, c) the
minimum amount of time between the two roll movements
that belong to one bite event and d) the minimum amount of
time between consecutive bites. Using the method reported
in [24], the authors of [27] achieve a sensitivity/positive
predictive value (ppv) of 0.81/0.86 (corresponding to an F1
score of 0.83) in their laboratory setting and a sensitivity/ppv
of 0.81/0.83 (corresponding to an F1 score of 0.82) in their
realistic cafeteria setting.

The work of Ramos-Garcia et al. [28] presents a method that
uses the information from wrist-mounted triaxial accelerom-
eters and gyroscopes with the purpose of recognizing certain
coarse in-meal gestures including: a) rest, b) utensiling, c)
drink, d) bite and e) other. The authors propose a gesture-to-
gesture Hidden Markov Model (HMM) approach for capturing
the temporal dependencies between gestures. Experiments in
their dataset of 25 meals from 25 unique subjects reveal the
potential of their approach by achieving a high recognition ac-
curacy for the bite gesture when using manually pre-segmented
data. No results are reported for bite detection in a continuous
fashion.

Zhang et al. [29] also propose an algorithm for detecting
feeding gestures using the acceleration and orientation velocity
signals from a typical smartwatch. Their approach mainly
focuses on a scheme for segmenting candidate regions that
are later classified as feeding gestures by means of a Random
Forest classifier. Experimental results on their relatively small
unscripted dataset of 5 meals belonging to 5 unique subjects,
show the potential of their approach by achieving a mean
classification precision of 0.87 and a mean classification F1
score of 0.30.

There are also efforts that make use of the characteristic
hand motions that occur when certain cutlery is used. For
example, the works of [30], [31] use accelerometer data from
wrist mounted sensors to deal with the recognition of Asian-
style eating events that mainly involve the use of the spoon
and chopsticks in contrast to the western eating styles that
mostly use the fork. More specifically, in [30] the authors
use a CNN to achieve an accuracy of 0.879 towards the
classification of three eating activities involving the usage of
spoon, chopsticks and cup in their intra-subject experiments
on a dataset of 7 meals. The work of [31] elaborates on the
same approach by identifying a total of 29 Asian-style eating
actions, such as “taking chopsticks” or “picking toppings
& putting in mouth” using 3 types of utensils. Using a
Bagging (i.e. bootstrap aggregating) classification scheme, the

authors achieve a classification accuracy of 0.75 towards the
recognition of the utensil involved (3 classes) and an accuracy
of 0.28 regarding the recognition of eating actions (29 classes).
More specifically, the F1 score of bite-related hand movements
such as “picking side dish & putting in mouth” or “scoop
soup & putting in mouth” is reported as 0.133 and 0.128
respectively.

Another work of Zhang et al. [25] explores the perfor-
mance effects of selecting the optimal feature set and clas-
sifier towards the detection of feeding gestures using two
smartwatches (one in each hand). In their work, the authors
characterize a wrist motion as a feeding gesture if it is either
a “food-to-mouth” or “back-to-rest” motion. In detail, the
authors propose a window-based feature extraction scheme,
a classification scheme involving the aforementioned motions
and a density-based clustering scheme (DBSCAN) for the
final bite moment detection. Evaluation of their approach is
performed on a dataset of 15 subjects performing scripted
eating and non-eating activities in a lab environment. The au-
thors report an average F1 score of 0.757 in their Leave-One-
Subject-Out (LOSO) experiments using the most descriptive
feature subset coupled with the AdaBoost classifier. Similarly,
the recent work of Thomaz et al. [32] also models the process
of eating as a bimanual (i.e. two hand) task. Using their dataset
of 14 participants performing a total of 8 eating (e.g. use
fork) and 7 non-eating (e.g. watch a movie trailer) activities
in a scripted fashion, the authors show that there is significant
gain in performance when taking into consideration the sensor
data (acceleration and orientation velocity) from both hands in
contrast to just a single hand. More specifically, the authors
achieve an F1 score of 0.763 towards the recognition of eating
related activities when using sensor data from both hands
coupled with a L2 normalization scheme as preprocessing and
the Random Decision Forest classifier. No results are reported
however regarding the detection of each individual activity.

In our previous works [33] and [26] we used 5 micromove-
ments to model the sequence of wrist motions leading to a
food intake event. More specifically in the latest work [26], we
made use of the acceleration and orientation velocity signals
from a single off-the-shelf smartwatch and proposed a feature
extraction scheme based on a sliding window. Subsequently,
we modeled the extracted features as 10-dimensional score
vectors using a multiclass Support Vector Machine, with
10 one-versus-one classifiers and the Radial Basis Function
(RBF) kernel. These scores refer to the respective distance
from the separating hyperplane produced by each of the one-
versus-one SVMs. The sequences of score vectors are then
modeled by a similar LSTM network. LOSO experiments in
our 10 subject dataset achieved an F1 score of 0.892.

The current work significantly improves this approach by
introducing CNN and LSTM models of sensor windows and
their sequences. It also presents a comprehensive evaluation
which shows the effectiveness of our method in 21 meals
recorded by 12 subjects in real-world conditions. The eval-
uation includes experiments involving both the first stage
(estimating the micromovement distribution of each window)
and the complete food detection pipeline. More specifically,
the main contributions of this paper are:
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1) A method for in-meal bite detection involving a two-
stage modeling of wrist movements and its cross-subject
evaluation that indicates superior performance compared
to other existing state-of-the-art methods.

2) A CNN architecture capable of extracting features from
the raw inertial signals (acceleration and orientation ve-
locity) and modeling signal windows as micromovement
probability distribution vectors (see Section III-C). This
eliminates the need for hand-crafted features.

3) A publicly-available challenging dataset recorded under
unscripted real-life scenarios involving a wide spectrum
of different food types and eating styles. Other than the
inertial signals originating from the wrist-mounted sen-
sors, the dataset includes annotations at micromovement
and food intake level (see Section IV-A).

III. FOOD INTAKE CYCLE DETECTION ALGORITHM

A. Definitions & method outline

In this paper we aim at the detection of food intake cycles
that appear during the course of a meal. Each food intake cycle
is modeled as a sequence of specific wrist micromovements.

The term micromovement corresponds to a simple and short
duration movement of the wrist that operates the utensil during
the course of a meal. A typical example of a micromovement is
the upwards movement of wrist towards the mouth area. Table
I presents the identified micromovements along with a short
description. Subsequently, we define the food intake cycle as
the period that starts by picking up food from the plate (p),
continues with an upwards motion of the wrist towards the
mouth area (u), progresses with the placement of the food into
the mouth (m) and finishes with a downwards motion of the
wrist away from the mouth area (d). The previous intake cycle
definition refers to the ideal scenario; in practice however,
the intake cycle can contain micromovements other than the
previously mentioned ones (i.e., other movement - o and no
movement - n) and/or repetitions of micromovements. We use
the term cycle to emphasize the quasiperiodic nature of food
intakes during a meal. A visual representation of the relation
between micromovements and intake cycles as well as two
indicative examples can be found in Figure 1.

The method presented in this paper processes fixed-size
overlapping windows of the accelerometer and gyroscope
streams with the purpose of detecting food intake cycles during
the course of a meal. We propose a two-step approach. The
first step deals with the estimation of the micromovement
distribution that takes place during each window of the raw
sensor streams by means of a CNN. Instead of propagating
to the next step the multiclass classification output (hard
decision) of the first step, we provide all micromovement
scores as computed by the last layer (softmax) of the CNN.
These outputs correspond to the probabilities of the input
window belonging to each micromovement, and sum to one.
The second steps deals with the classification of window
sequences as food intake cycles or not, via an LSTM network.
Figure 2 depicts the overall pipeline of our method. Note
that while Figure 1 shows the start and stop moments for

TABLE I
TABLE LISTING THE IDENTIFIED MICROMOVEMENTS.

Micromovement Description

Pick food Wrist manipulates a utensil to pick food from a plate
Upwards Wrist moves upwards, towards the mouth area
Downwards Wrist moves downwards, away from the mouth area
Mouth Wrist inserts food in mouth
No movement Wrist exhibits no movement
Other movement Every other wrist movement

each micromovement, in our approach we use multiple fixed-
size overlapping windows during each micromovement. This
notion is further depicted in Figure 3.

o p u n u dm o o p n u m d o

Fig. 1. Example of two intake cycles (shaded areas) and micromovements
(dotted lines). Each micromovement is identified by the letter in the upper
part of the figure, which matches the initial letter of the micromovement in
Table I. The 1-D signal depicted in the figure is a single channel of the
accelerometer stream. The leftmost food intake cycle example depicts: i) the
repetition of the u micromovement inside the same intake cycle because the
upward motion was interrupted by the n micromovement (e.g. pre-loading
the utensil while still chewing the previous bite) and ii) the inclusion of wrist
motions not related to eating (o) before the final downward (d) movement
(e.g. participating in a conversation with the utensil mid-air).

B. Preprocessing
Let anx , a

n
y , a

n
z and gnx , g

n
y , g

n
z , with n = 1, . . . , N be

the x, y and z streams of the 3D accelerometer and 3D
gyroscope sensors captured during a meal. The length N of
the streams is defined as N = t · fs, where t is the meal’s
duration in seconds and fs the sampling frequency of the
accelerometer and gyroscope sensors in Hz. A meal can be
then represented by the N×6 data matrix M which is defined
as M = [ax,ay,az,gx,gy,gz], where az,ay,az,gz,gy,gz

are the N -length column vectors of the accelerometer and
gyroscope sensor streams.

The first preprocessing step is to smooth any short and
sudden fluctuations of each individual sensor stream. Experi-
mentation with a 5th order median filter provided satisfactory
smoothing results. Furthermore, since the accelerometer sensor
captures both the acceleration caused by the voluntary move-
ment of the wrist as well as the acceleration caused due to
the Earth’s gravitational field, we convolve the ax,ay and az

columns of M with a high-pass FIR filter with a 512 tap delay
line and a cutoff frequency of 1 Hz.

Finally, each column of M is standardized, by subtracting
the mean and dividing with its own standard deviation. The
last step is important since having data in different scales in
a learning scenario may lead to early saturation during the
optimization procedure.

C. Learning the micromovements
Following the preprocessing step, a CNN is used to estimate

the micromovement probability distribution that takes place
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Fig. 2. Figure depicting the overall pipeline of the method. From left to right, the windowed accelerometer and gyroscope sensor streams of length wl are
transformed into the 5-dimensional micromovement probability distribution si by the convolutional neural network. Processing of additional sensor windows
leads to the creation of the meal’s probability distribution matrix S. By processing parts of S with length w′

l, the recurrent network outputs the probability
pintake that the given window sequence is a food intake cycle. The variables hi,j and ci,j are used to represent the i-th hidden output and cell state of the
jth LSTM layer respectively.

wl-ws

m

ws

wl

Fig. 3. Application of the sliding window approach in the leftmost m
micromovement of Figure 1. The shaded areas represent two consecutive
timesteps of the sliding window with length wl, step size ws. The quantity
wl − ws indicates the overlap between two windows.

during each window of the raw sensor streams. The proposed
network architecture consists of two one-dimensional convo-
lutional layers and a single fully connected layer with 5 units.
Each of the convolutional layers is followed by a temporal max
pooling operation with a decimation factor of 2. Furthermore,
the fully connected layer takes as input the flattened output of
the second max pooling operation. As the depth of the network
increases, the number of filters in each convolutional layer
is increased as well. Specifically, we use 64 and 128 filters
in the convolutional layers. The size of the filters is retained
across layers and equal to 10 tap delays, which corresponds
to 0.1 seconds considering a sampling frequency of 100 Hz.
All convolution operations produce an output of the same
length as the provided input. In addition, each of the two
one-dimensional convolutional layers uses the Rectified Linear
Unit (ReLU) as activation, whereas the softmax is selected for
the output layer.

We trained the network by extracting parts of the prepro-
cessed matrix M (Section III-B) using the sliding window ap-
proach. The length wl and step size ws of the sliding window
were set to 0.2 and 0.1 seconds (20 and 10 samples considering
100 Hz sampling frequency) respectively. Using this approach,
the convolutional network can be trained using the extracted
parts of M, each with dimension 20× 6, belonging to the: i)
pick food (p), ii) upwards (u), iii) downwards (d), iv) mouth
(m) and v) no movement (n) classes. The “other movement”
(o) class was hard (and unnecessary) to model efficiently and

was therefore excluded from the training procedure. This is
due to its high intra-class variability, since it was used to
classify any movement that is not p, u, d, m or n. Experiments
(Section IV) indicate that the exclusion of the o class does not
hurt the method’s performance.

Finally, the convolutional network is trained by minimizing
the categorical cross-entropy loss defined as:

L = −
∑
i∈B

∑
j∈J

yi,j log(pi,j) (1)

where yi,j is the optimization target, pi,j the predictions of the
network, J = {p, u, d,m, n} is the set of micromovements and
B is the number of signal windows in the dataset. We used
the Adam optimizer with a learning rate equal to 10−3 for
32 epochs with a mini-batch size of 32. Finally, we applied
a 50% dropout chance to the weights of the fully connected
layer to prevent overfitting during training [34].

Using the trained CNN, each N × 6 data matrix M repre-
senting a meal session is effectively transformed into a K× 5
matrix S, with K = b(N − wl)/wsc + 1 being the number
of overlapping signal windows. Essentially, the i-th row of S
represents the micromovement probability distribution of the
signal window of M indexed from i · ws to i · ws + wl.

D. Modeling the temporal evolution

To classify sequences of windows as food intake cycles we
apply an LSTM network. LSTM networks [35] are gated Re-
current Neural Networks (RNN), that are specifically designed
to overcome the long term dependency, vanishing gradient
and exploding gradient problems. By using a combination
of input, output and forget gates, LSTMs are able to retain
information over a long period; making them efficient in
modeling sequences of food intake cycles that deviate from the
ideal scenario. For example, when there are wrist movements
that do not lead to intakes in-between bites.

The proposed recurrent network takes as input overlapping
sequences of micromovement distributions (rows of matrix
S, defined in Section III-C), with sequence length w′l and
a step w′s, and outputs a probability that the input sequence
is a food intake cycle. The length w′l is set to 35 samples
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while the step size w′s is set to 1 sample, which correspond
to 3.6 and 0.1 seconds for wl = 20, ws = 10 (Section
III-C) and sensor sampling frequency of 100 Hz (see Section
III-B). A window length of 3.6 seconds approximates the
median food intake cycle duration in our dataset (which is
equal to 3.55 seconds). The recurrent network consists of
two consecutive LSTM layers each with 64 hidden cells.
Both LSTM layers use the hard sigmoid function, defined as
σ(x) = max(0,min(1, x · 0.2 + 0.5)), as the non-linearity for
the recurrent step and the hyperbolic tangent (tanh) for the
activation of the gates. The output of the network is obtained
by a fully connected layer with a single neuron using the
sigmoid function. Similar to the CNN, we applied a 50%
dropout chance to the weights of the fully connected layer
to prevent overfitting during training [34].

To train the network, we label as positive examples the sub-
sequences of the micromovement probability density matrix S
(Section III-C) that began with the “pick food”, ended with the
“downwards” and containing a “mouth” micromovement in-
stance. Micromovement sequences appearing in-between two
positive examples were considered as negative examples. The
set of negative examples is further augmented by allowing
the negative examples to partially overlap with the positive
ones. The percentage of the overlap for each example in the
augmented set is experimentally selected as a random number
between 15% and 35% of the duration of the corresponding
positive example. In addition to including transitions between
positive and negative sequences, this augmentation step bal-
ances the number of training examples of the two classes, thus
allowing for a more smooth optimization during training.

The recurrent network is trained by minimizing the binary
cross-entropy loss defined as:

L̂ = −
∑
i∈B′

(
ŷi log(p̂i)− (1− ŷi) log(1− p̂i)

)
(2)

where ŷi ∈ {0, 1} indicates the optimization target and p̂i the
prediction of the i-th sequence in the dataset size B′, using the
RMSprop [36] optimizer with a learning rate equal to 10−3

for 6 epochs with a mini-batch size of 32.
Using the trained LSTM model, each K×5 micromovement

distribution matrix S is transformed into the K ′×1 predictions
vector p, with K ′ = b(K − w′l)/w′sc + 1 being the number
of overlapping sequences. Essentially, the i-th element of
p corresponds to the normalized probability that the input
sequence of micromovement probability distributions of S
indexed from i · w′s to i · w′s + w′l, with i = 1, . . . ,K ′, is
a food intake cycle.

E. Eating moment detection

Eating moment detection on a meal session is first per-
formed by transforming the raw data matrix M into the
micromovement probability distribution matrix S using the
trained CNN network. Then, by providing the probability
distribution matrix S as input the trained LSTM network
we obtain the food intake predictions vector p. Next, we
perform thresholding on the series p by replacing with zeros
the elements that are below a probability threshold pt. By

experimenting with a small subset of the FIC dataset (four
out of the twenty-one meals selected at random) we selected
pt to be equal to 0.89 as this value yielded the highest F1
detection score for that small subset. The final food intake
cycles are detected by performing a local maxima search in
the thresholded series p with a minimum distance between
successive peaks set at 2 seconds. The food intake moments
correspond to the timestamps of the detected local maxima.

IV. EXPERIMENTS & EVALUATION

A. Dataset

In our experiments we use our publicly available Food
Intake Cycle (FIC) dataset. The FIC dataset contains the
triaxial acceleration and orientation velocity signals from 21
meal sessions provided by 12 unique subjects. All meals
were recorded in the restaurant of Aristotle University of
Thessaloniki using a commercial smartwatch, the Microsoft
Band 2™ for ten out of the twenty-one meals and the Sony
Smartwatch 2™ for the remaining meals.

Each participant was free to select the food of their pref-
erence, typically consisting of a starter soup, a salad, a main
course and a desert. This led to recordings from a diverse set
of main dishes, including meat, soup, pasta, rice and others.
This is important because movements in the “other movement”
category vary, depending on the type of meal (e.g., cutting
meat with a knife, or holding a fork versus holding a spoon).
Prior to the recording, the participant was asked to wear the
smartwatch to the wrist that he typically uses in his everyday
life to manipulate the fork and/or the spoon. A GoPro™ Hero
5 camera was already set at the table of the participant using a
small, 23 cm in height, tripod facing the participant, including
both the food tray and upper body part in it’s field of view.
The purpose of video recording was to obtain ground truth
data by manually annotating the IMU sequences based on
the video stream. Participants were also asked to perform a
clapping hand movement both at the start and end of the meal,
for synchronization purposes (as this movement is distinctive
in the IMU signal). No other instructions were given to the
participants. Figure 4 depicts four typical examples of subjects
included in FIC. It should be noted that the FIC dataset does
not contain instances related with liquid consumption or eating
without the fork, knife and spoon (e.g. eating directly with
hands).

The start and end moments of each food intake cycle as
well as of each micromovement are annotated throughout
the dataset. Out of the total number of meals, twelve meals
were annotated by two raters with a intra-rater agreement
of 99%, the rest of the meals were annotated by a single
rater. The FIC dataset is publicly available on the Multimedia
Understanding Group (MUG) website1. Technical information
about the duration of the intake cycles, micromovements and
meals can be found in Tables II and III.

B. Experiments & evaluation methodology

1The FIC dataset is available for download at https://mug.ee.auth.gr/
intake-cycle-detection/

https://mug.ee.auth.gr/intake-cycle-detection/
https://mug.ee.auth.gr/intake-cycle-detection/
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(a) (b)

(c) (d)

Fig. 4. Typical examples of subjects in the FIC dataset performing: a) pick food, b) upwards, c) mouth and d) downwards micromovements. The stills
originate from the camera used to provide video annotations. The various eating styles and food types contained in FIC are also depicted.

TABLE II
FIC DATASET MEAL AND FOOD INTAKE CYCLE DATASET STATISTICS.

Type # Mean (s) Std (s) Median (s) Total (s)

Meal sessions 21 703.56 186.18 717.88 14, 774.80

Food Intake Cycles 1, 332 4.52 3.22 3.55 6, 023.07

TABLE III
FIC DATASET MICROMOVEMENT STATISTICS.

Micromovement # Mean (s) Std (s) Median (s) Total (s)

p 1, 376 1.65 1.40 1.16 2, 275
u 1, 369 0.93 0.51 0.81 1, 274
d 1, 343 0.63 0.45 0.53 848
m 1, 344 0.47 0.24 0.43 632
n 328 6.03 5.75 4.13 1, 978
o 1, 517 5.65 7.30 3.27 8, 576

1) Food intake detection experiment - FI: The first experi-
ment we conducted deals with the cross-subject effectiveness
of our approach, i.e. how well the method performs for
meals that belong to unseen subjects. To achieve this, we
used all available data from FIC to train both the proposed
convolutional and LSTM networks in a LOSO fashion by
iteratively leaving-out meals belonging to a single subject. At
each iteration, evaluation is performed on the meals of the
left-out subject.

2) Micromovement experiment - MM: We also performed
an experiment evaluating the effectiveness of estimating the
micromovement in each sensor window in order to gain further
insight regarding how the quality of this estimate may effect
the overall food intake detection performance. To this end
we used the complete dataset to extract a total of 155655
windows of length wl using the sliding window approach

described in III-C. Out of the total number of samples, 19720
samples (12.66%) belong in the n class, 12716 (8.16%) in u,
8487 (5.45%) in d, 22755 (14.61%) in p, 6327 (4.06%) in
m and 85650 (55.02%) in o. We then trained the proposed
convolutional network in a LOSO fashion initially using the
samples from the five classes of interest (i.e. excluding the
samples from the o class) and then using the samples from all
six micromovement classes.

Regarding the FI experiment, we measure the performance
of the method by calculating the true positive (TP), false
positive (FP) and false negative (FN) metrics. In more detail,
given the timestamps of the D detected moments tdi for
i = 1, 2, . . . , D in a meal session and the G ground truth
food intake intervals described by their start and end moments
[tsj , t

e
j ], j = 1, 2, . . . , G, we perform metric calculation in the

following fashion. If a tdi ∈ [tsj , t
e
j ] exists for some i and j,
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Fig. 5. Four representative examples that arise when calculating TPs, FPs
and FNs using our proposed evaluation scheme.
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Fig. 6. Four representative examples that arise when calculating TPs, FPs
and FNs using the evaluation scheme of Dong et al. [24].

then the i-th detection is being associated to jth ground truth
interval and it counts as a TP; unless a detection moment tdi′
with i′ < i has already been associated with the same ground
truth interval. In the latter case it counts as a FP. Detection
moments not associated with any ground truth interval (i.e.
tdi 6∈ [tsj , t

e
j ] for all j) also count as FPs. Finally, ground truth

intervals not associated with a detection tdi for any i, count
as FNs. Figure 5 illustrates the proposed metric calculation
scheme.

We also extend the evaluation of experiment FI by calcu-
lating the TP, FP and FN metrics using the evaluation scheme
presented in the work of Dong et al. [24]. One fundamental
difference between the two schemes is the definition of ground
truth. In [24] the authors use as ground truth the moment of
bite while in our approach we use the interval starting with
p, ending with d and containing an m micromovement. In
our experiments the moment of bite is approximated by the
center of the m micromovement interval. Another difference
is that the scheme proposed in [24] is significantly less strict
when considering the temporal localization of the bite. For
each detected bite, the authors consider the interval between
the previous and the following detected bites. The first ground
truth bite in this interval that is not associated with a detected
bite is considered as TP. As the authors of [24] indicate, the
reason is that in some cases it is possible for detections to
occur prior to the actual placing of food into the mouth. If
there are no ground truth bites in this interval then the detected
bite is classified as FP. After classifying all detected bites any
ground truth bites that are not associated with detected ones
count as FNs. Figure 6 illustrates the evaluation scheme of
[24].

For the MM experiment, evaluation is performed by com-
paring the hard decision (most probable class) of the micro-
movement classifier against the true label of each window.

C. Results & discussion

Early experimentation with a small subset of the FIC
dataset, showed that CNN architectures that are shallower

than the proposed are not as effective in terms of average
micromovement recognition accuracy. Similarly, single-layer
LSTM models proved to be suboptimal as well. The latter is
further supported by the work of Karpathy et al. [37] where
the authors have shown that using a depth of at least two
recurrent layers is beneficial when learning sequences.

For comparison purposes we evaluate the cross-subject
performance of our method against three state-of-the-art ap-
proaches (experiment FI, Section IV-B1). The first is the
method proposed by Dong et al. [24], the second is the work
by Zhang et al. [25] and the third is a previous work of
our group [26]. An overview of these algorithms has been
provided in Section II. We implemented and tuned both [24]
and [25] according to the instructions provided by the authors.
Specifically for [25], the best results were obtained by using a
window size of 1 seconds with 0.7 seconds overlap (denoted
“slow fine-grain” approach), the complete feature set, an
SVM classifier with a linear kernel (regularization parameter
C = 10) and finally eps = 2 and minimum samples = 3
for DBSCAN clustering. The method of [24] was optimized
at each LOSO iteration in order to yield the best possible
performance.

Regarding the MM experiment (Section IV-B2) we com-
pare the micromovement probability estimation performance
achieved by the proposed CNN against our previous work [26]
that follows a window-based feature extraction scheme and a
classification scheme that involves a multiclass SVM with 10
one-versus-one classifiers.

Since each repetition of the LSTM stochastic optimization
process may lead to different minima in the loss surface
and therefore influence the estimated food intake detection
performance we repeated the LSTM training process 10 times.
More specifically, regarding the FI experiment a total of 10
models were produced at each LOSO iteration leading to a
total of 10 · 12 = 120 models, where 12 is the number of
subjects. The metrics corresponding to the same meal are then
averaged and the average metrics are then summed across
different meals to produce the aggregated confusion matrix and
calculate the final Precision

( TP
TP+FP

)
, Recall

( TP
TP+FN

)
and F1(

2 · Precision·Recall
Precision+Recall

)
metrics. We selected these retrieval metrics

specifically (i.e. precision, recall and F1, their harmonic mean)
because both the proposed evaluation scheme as well as the
evaluation scheme proposed in [24] are unable to calculate
true negatives (TNs). The decimals in the TP, FP, and FN
metrics presented in this section are the result of averaging
across experiment iterations for the same meal.

It should also be noted that despite the food intake cycles
span on average 40% of the meal duration in our dataset, the
prior probability of the food intake cycle detection problem is
significantly lower. This is because only one detection must
occur for each intake cycle, with additional detections counting
as FPs. Specifically, out of the approximately 147748 total
windows of length w′l only 1332 (0.9%) correspond to the
positive class. This imbalance between the positive and the
negative class further increases the value of the F1 metric.

Tables IV and V present the results of the FI experiment that
involves the proposed, [26], [25] and [24] methods, using the
two evaluation schemes (ours and the one proposed in [24]).
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TABLE IV
RESULTS OF THE FI EXPERIMENT USING THE PROPOSED EVALUATION SCHEME. THE ? SYMBOL IN THE METHOD PROPOSED BY DONG et al. IS USED TO

SIGNIFY THAT PARAMETER TUNING WAS PERFORMED BY OPTIMIZATION BASED ON OUR PROPOSED EVALUATION SCHEME.

Method TP FP FN Prec Rec F1

Proposed 1, 241.8 144.5 90.2 0.895 0.932 0.913
Kyritsis et al. [26] 1, 221.5 228.4 110.5 0.842 0.917 0.878
Zhang et al. [25] 944 431 388 0.686 0.708 0.697
Dong et al. [24] 707 794 625 0.471 0.530 0.499
Dong et al. [24] ? 772 746 560 0.508 0.579 0.541

TABLE V
RESULTS OF THE FI EXPERIMENT USING THE EVALUATION SCHEME PRESENTED IN [24]. THE ? SYMBOL IN THE METHOD PROPOSED BY DONG et al. IS

USED TO SIGNIFY THAT PARAMETER TUNING WAS PERFORMED BY OPTIMIZATION BASED ON OUR PROPOSED EVALUATION SCHEME.

Method TP FP FN Prec Rec F1

Proposed 1, 263.4 122.9 68.6 0.911 0.948 0.929
Kyritsis et al. [26] 1, 267.6 182.3 64.4 0.874 0.951 0.911
Zhang et al. [25] 1, 102 233 230 0.825 0.827 0.826
Dong et al. [24] 1, 190 311 142 0.792 0.893 0.840
Dong et al. [24] ? 1, 214 304 118 0.799 0.911 0.851

Evaluation results indicate that the proposed method achieves
the highest F1 score for both evaluation methods (Tables IV
and V). An overall increase to F1 can also be observed across
all experiments of Table IV when switching to the evaluation
scheme of [24] scheme; 0.929 from 0.913 for the proposed,
0.911 from 0.878 for [26], 0.826 from 0.697 for [25] and 0.840
from 0.499 for [24]. Furthermore, a significant increase in the
F1 score of method [24] can be observed when performing
parameter tuning by optimizing using our proposed evaluation
scheme, 0.541 up from 0.499 in Table IV and 0.851 up from
0.840 in Table V.

Row-wise comparison of Tables IV and V points out the
differences in the obtained results produced by the two differ-
ent evaluation schemes. Selection of the appropriate evaluation
scheme depends on the desired application. On the one hand, if
the goal is to count the number of bites in a meal session or to
estimate the duration of a meal, then the less strict evaluation
scheme presented in [24] suffices. On the other hand, if the
goal is to investigate the structure of a meal then bites need to
be detected in a more detailed fashion. As an example of the
latter, the works of [38], [39], and [22] study the detailed meal
structure including the eating rate and its temporal evolution.
Correlation of the intervals between bites with eating behavior
indicators is left as future research.

Table VI presents the normalized confusion matrices (in-
cluding percentages instead of absolute numbers) as well as the
average accuracy for each of the micromovement experiments.
The results initially point out that both micromovement classi-
fiers when trained using samples from the 5 classes of interest
outperform in terms of accuracy their counterparts trained
using all samples, including the ones from the o class. In
addition, the proposed convolutional network achieves higher
average accuracy when compared with the SVM that takes
handcrafted features as input (0.791 in contrast to 0.737).

In our proposed approach instead of classifying raw signal
windows as bite (i.e. m) events, we model them as micromove-
ment probability distributions (by means of the CNN) and
use their sequences as input to the sequence model (LSTM).

This allows us to make use of the temporal evolution of
the micromovement probability distributions leading to and
after the bite event. Also, the input to the sequence model
is the micromovement distribution and not a single micro-
movement (i.e. the hard decision). Thus, even if the wrong
micromovement has the highest probability, there is usually
significant probability mass to the correct one as well. Results
from the FI experiment (Table IV) regarding the proposed
approach indicate that despite the average micromovement
recognition accuracy being mediocre (0.792, Table VI-a),
sequence modeling by means of an LSTM network is robust.
Figure 7 provides a graphical example of how an intake
event of the left-out subject is modeled using sequences of
micromovement distributions.

Experiment FI is closely related to MM in the sense that
they follow the same micromovement learning setup. Compar-
ing Tables IV and VI (a and c) regarding the proposed and
the method of [26], it can be observed that while keeping
the same temporal modeling and intake moment detection
mechanisms, an increase to the micromovement recognition
performance can lead to an overall increase of the food intake
detection performance, even when the average micromovement
recognition accuracy is mediocre.

D. Limitations

Experimental results in Section IV-C indicate that our
method can effectively detect food intake cycles during the
course of a meal. However, our method assumes that the
start and end moments of the meal are known. In a practical
scenario this would require that the user starts recording
moments before eating and stops recording moments after the
meal ends. Future research efforts will be directed towards the
automatic detection of the meal start and end points.

In addition, our current work deals with the modeling of
eating behavior by analyzing meal sessions that are centered
around using the fork, the knife and the spoon. Thus, liquid
intake instances (e.g. drinking water from a glass), eating with
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Fig. 7. a) Example of modeling a food intake cycle as a sequence of micromovement probability distributions. The micromovement ground truth intervals
are also marked below the figure. b) Zoomed-in view of the area marked by the dotted line in a) (a single micromovement probability distribution at t = 0).

TABLE VI
MM EXPERIMENT RESULTS. TOP ROW: NORMALIZED CONFUSION MATRICES FOR THE PROPOSED APPROACH USING 5 (A) AND 6 (B) CLASSES. BOTTOM

ROW: NORMALIZED CONFUSION MATRICES FOR THE MULTICLASS SVM FROM [26] USING 5 (C) AND 6 (D) CLASSES.

Predicted
n u d p m

A
ct

ua
l

n 0.892 0.013 0.018 0.069 0.005
u 0.042 0.749 0.008 0.167 0.031
d 0.068 0.013 0.649 0.193 0.075
p 0.052 0.057 0.043 0.826 0.019
m 0.028 0.112 0.089 0.141 0.627

(a) Average accuracy= 0.791

Predicted
n u d p m o

A
ct

ua
l

n 0.348 0.003 0.001 0.004 0.000 0.640
u 0.002 0.655 0.001 0.058 0.022 0.260
d 0.002 0.003 0.312 0.006 0.047 0.628
p 0.003 0.040 0.003 0.257 0.005 0.689
m 0.002 0.097 0.068 0.021 0.486 0.323
o 0.053 0.017 0.012 0.039 0.005 0.871

(b) Average accuracy= 0.651

Predicted
n u d p m

A
ct

ua
l

n 0.922 0.008 0.006 0.060 0.001
u 0.060 0.754 0.002 0.173 0.009
d 0.098 0.011 0.619 0.210 0.061
p 0.090 0.086 0.047 0.750 0.024
m 0.061 0.160 0.127 0.407 0.242

(c) Average accuracy= 0.737

Predicted
n u d p m o

A
ct

ua
l

n 0.824 0.002 0.000 0.001 0.000 0.170
u 0.038 0.660 0.000 0.061 0.000 0.237
d 0.036 0.006 0.317 0.007 0.009 0.627
p 0.041 0.050 0.004 0.184 0.000 0.718
m 0.019 0.138 0.067 0.066 0.036 0.671
o 0.213 0.029 0.020 0.048 0.001 0.686

(d) Average accuracy= 0.581

different utensils (e.g. chopsticks) or eating using bare hands
are not taken under consideration.

While the recording conditions coincide with the typical
way that someone eats in the cafeteria of Aristotle University
of Thessaloniki, the FIC dataset does not cover the whole
spectrum of eating and non eating-related gestures that can
be performed during meals. Nevertheless, there are multiple
instances where for example the participant engaged in con-
versation with individuals in the same table (with or without
a “loaded” utensil mid-air) or used his personal smartphone.

The relatively high memory and computational requirements
of our method may impose limitations on current wearable
hardware. Out of the four approaches that we presented in
our experimental section, only the approach presented in [24]
can be integrated in a wearable device as the current state
of wearable hardware does not allow for demanding real-

time processing. The average processing times, in seconds,
for a meal in our dataset are: 0.334 for [24], 3.243 for the
proposed method, 13.842 for [25], and 72.735 for our previous
method presented in [26]. In our calculations we took under
consideration the processing time required, where applicable,
for preprocessing, feature extraction, model inference and
postprocessing. All experiments were conducted using an
Intel(R) Xeon(R) CPU E5-2650 clocked at 2.30GHz and
coupled with an NVIDIA Tesla K40 GPU. It is worth noting
that although these methods cannot be implemented on current
wearable hardware, offline processing can be performed by
transmitting the raw IMU signal externally.

V. CONCLUSIONS

We have presented an algorithm for measuring the in-meal
eating behavior by performing temporal localization of the
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intake moments (i.e. bites) using the inertial signals from off-
the-shelf smartwatches. In our approach we use five specific
wrist micromovements to model the sequence of actions
leading to and after an intake event. Past the preprocessing
step, our algorithm initially uses a CNN to recognize and
model the micromovements. Next, the temporal evolution of
the micromovements is modeled by a recurrent network with
two LSTM layers.

We evaluate the performance of our algorithm on our
challenging, publicly-available dataset of 21 meals from 12
subjects. In addition, we compare the performance of our
approach against three state-of-the-art methods using two eval-
uation schemes. Results from our LOSO food intake detection
experiments indicate that our approach yields higher F1 score
(0.913) when compared with other state-of-the-art approaches.
Finally, we experimentally show the relation between the
overall intake detection and the micromovement detection
performance.

These results are promising, and indicate that the proposed
method is sufficiently robust to be used as a measurement tool
for in-meal eating event detection, both for scientific research
as well as for dietary monitoring applications. Future research
involves the development of improvements to overcome the
limitations outlined in Section IV-D, as well as the extensive
evaluation of the proposed method in larger datasets.
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