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Abstract— Automated monitoring and analysis of eating be-
haviour patterns, i.e., “how one eats”, has recently received
much attention by the research community, owing to the
association of eating patterns with health-related problems and
especially obesity and its comorbidities. In this work, we intro-
duce an improved method for meal micro-structure analysis.
Stepping on a previous methodology of ours that combines
feature extraction, SVM micro-movement classification and
LSTM sequence modelling, we propose a method to adapt a pre-
trained IMU-based food intake cycle detection model to a new
subject, with the purpose of improving model performance for
that subject. We split model training into two stages. First, the
model is trained using standard supervised learning techniques.
Then, an adaptation step is performed, where the model is
fine-tuned on unlabeled samples of the target subject via semi-
supervised learning. Evaluation is performed on a publicly
available dataset that was originally created and used in [1] and
has been extended here to demonstrate the effect of the semi-
supervised approach, where the proposed method improves over
the baseline method.

I. INTRODUCTION

Obesity has been characterized as a modern epidemic, with
almost a quarter of the planet’s population being affected.
Contrary to other epidemics, obesity can be viewed as the
result of a number of factors, most of which are highly
treatable, thus rendering the disease itself preventable. One
such factor has been identified in the eating behavior patterns
of individuals [2]. Therefore, automated and unobtrusive
monitoring of the in-meal eating behavior is a research
direction that can provide substantial benefits to the study
and treatment of obesity [3].

Pre-existing works attempted to measure meal eating be-
havior using specialized equipment such as a weight scale
[4] or intra ear microphones [5], while others resort to more
readily available devices such as Inertial Measurement Unit
(IMU) sensors (e.g [6]) with results highlighting the potential
of using general-purpose devices, such as wristbands or
smartwatches, to achieve good performance on the task.

Based on these early results, the authors of [1] recently
proposed an IMU-based aproach that models the food intake
cycles based on distinct movements associated with food
intake and referred to as micro-movements (see TABLE I).
They use an array of binary Support Vector Machine (SVM)
classifiers to model the different micro-movements, followed
by two Hidden Markov Models (HMM) in order to capture
the time dependence between them. This method has led to
promising results. The later work of [7] refined the original
approach by substituting the HMM component with a Long
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Short Term Memory (LSTM) [8] network, leading to state-
of-the-art performance in the publicly available Food Intake
Cycle (FIC) dataset.

A potential pitfall of existing approaches is that model
training occurs in a subject-agnostic way; that is, variances
in the eating styles of different subjects are not taken into
account. Hence, when a pre-trained model is deployed for use
by a new subject, the inability to adapt it to that subject’s
eating style may cause performance to suffer. This could be
the case when the eating style of the new subject differs from
those the model has seen during training.

In a similar context, the authors of [9] recently proposed
a chewing detection model that can adapt to a new user
through an active learning framework that asks the user to
provide feedback on a few of the model’s less confident
predictions. The model is then re-trained using the initial
training set, augmented with the user feedback and the
process is iteratively repeated until satisfactory performance
is obtained.

In this work, we tackle the problem of adapting an IMU-
based food intake detection model to a new subject, through
the use of meal session recordings of that subject for which
the ground truth is not available. This setup corresponds to
a semi-supervised learning [10] task. Semi-supervised learn-
ing lies at the intersection of supervised and unsupervised
learning. It can be seen as a learning situation where, in
addition to a set of observations Xl = {x1, . . . ,xl} and their
corresponding labels Y = {y1, . . . , yl}, a set of unlabeled
observations Xul = {xl+1, . . .xl+u} is also available and the
goal is to exploit it, in order to derive a better classification
rule.

We propose to split model training into two distinct stages:
First, the LSTM model is trained in a supervised way as in
[7]. Then, a second, finetuning step of the LSTM component
is performed, by using an additional semi-supervised loss for
the unlabeled meal sessions of the new subject. The overall
method is described in detail in Section II.

Training and evaluation was carried out in an extension
of the FIC dataset, where additional meal sessions were
recorded in order to serve as unlabeled samples for our
algorithm. Early results indicate the validity of the proposed
method.

II. PROPOSED APPROACH

Unlabeled samples can be useful to the learning process
given that certain assumptions regarding the input distribu-
tion hold. One common such assumption is the low-density
separation [10] of classes, which states that high-density
regions in the input space, corresponding to different classes,



Cross-
entropy

Cross-entropy 
+

entropy 
minimisation

Labeled 
sequences 

Unlabeled 
sequences

Annotated
 meal 
dataset

New 
subject 
meals

Fig. 1: Overview of the proposed method. The final intake cycle detection model is personalized for the new subject based
on unlabeled sequences extracted from recorded meal sessions.

should be separated by low-density regions where samples
are unlikely to be observed.

One way to enforce this assumption during training of a
classifier is to add an additional term to its loss function,
that causes the decision boundary to move away from dense
regions. The entropy minimisation framework introduced in
[11], achieves this effect by adding a regularisation term to
the loss of a K-class probabilistic classifier, that corresponds
to the conditional entropy of the classifier output distribution
pmodel, over the unlabeled samples:

Lent = − E
x∈Xul

[
K∑

k=1

pmodel(y = k|x) · log pmodel(y = k|x)

]
We incorporate this idea to the framework introduced in

[7], in an effort to perform semi-supervised adaptation of
a pre-trained food intake cycle detection model to a new
subject. We use the same model architecture and split the
learning procedure into two stages:

1) Learning the base LSTM model in a supervised fash-
ion.

2) Finetuning the base model using the entropy minimi-
sation framework.

The rest of this section describes the two training stages
in detail.

A. Supervised pre-training

The work of [7] defined a food intake cycle as a se-
quence of micro-movements. Micro-movements constitute a
set of distinct hand movements commonly occuring during
food intake cycles. The authors identified 6 distinct micro-
movements that are characteristic of food intake cycles, such
as movement of hand to and from plate, insertion of food
into mouth, etc. The various micro-movements are listed in
TABLE I.

Let (ax[n], ay[n], az[n]) and (gx[n], gy[n], gz[n]) denote
respectively the accelerometer and gyroscope streams cap-
tured during a meal session. Given the two streams, a data
pre-processing step was performed to smooth the two signals
and remove the graviational component from the acceleration
signal. This was followed by a feature extraction step, where
a set of both time and frequency domain features were
extracted using a sliding window approach with a window
size wl of 0.2s and a step ws of 0.1s.

Each extracted feature vector fi, was associated with the
micro-movement the subject was performing at the respective
time frame. Using this information, an array of one-vs-one
SVM classifiers with RBF kernel was trained and used to
convert each fi into a N -dimensional SVM score vector, with
N = 10 due to the use of 5 (the micro-movement O was not
modeled due to its high-variance) micro-movements and the
one-vs-one nature of the SVM scheme.

The process so far, has transformed the input signals into a
sequence S̃ of SVM score vectors si ∈ RN , i = 1, 2, . . . , n,
where n is the number of windows extracted from the raw
signal. A sub-sequence S ⊂ S̃ was assigned to the positive
class (intake cycle) if its corresponding micro-movement
ground-truth starts with P, ends with D and contains at least
one M micro-movement. The remaining sub-sequences that
appear between consecutive intake cycles were associated
with the negative class (non-intake cycles). The pairs of
sub-sequences and labels created this way were used to
train an LSTM network to classify new sequences of si as
intake or non-intake cycles. To this end, a two layer LSTM
with 128 cells in each layer was employed, followed by a
fully connected layer with one output unit that provided the
probability of intake cycle. The network was trained using
the cross-entropy loss coupled with the RMSprop1 optimizer.

We use the above architecture, but perform some changes
to the LSTM component. In particular, we apply dropout to
both the input and the recurrent connections of the LSTM
and add an extra unit to the dense output layer, so that it ex-
plictly provides the probabilities of both the positive (intake
cycle) and the negative (non-intake cycle) class. This results
in an overparameterised version of the model distribution.
Both the original and the overparameterised versions can
describe the same set of probability distributions, but the
latter allows computing the semi-supervised loss of the next
section in a numerically stable way.

Throughout this work, we will assume that the SVM part
of the architecture is fixed and serves as a feature extraction
module. Thus, in the following, the term “model” will always
refer to the LSTM network.

B. Semi-supervised finetuning

After the model has been trained in a strictly supervised
manner for E1 epochs, we perform a finetuning step by
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Micro-movement Description
Pick food Hand manipulates a utensil to pick food

from the plate
Upwards Hand moves upwards, towards the mouth

area
Downwards Hand moves downwards, away from the

mouth area
Mouth Hand inserts food in mouth
No movement Hand exhibits no movement
Other movement Every other hand movement

TABLE I: Listing of all identified micro-movements

minimising the class conditional entropy of the model over
unlabeled si sequences extracted from additional meal intake
sessions. By doing so, we are implicitly asking the model
to alter the decision boundaries it has learnt thus far, so
that they do not pass from high-density regions of samples
from the subject we are adapting to. This has the potential
of correcting the decision boundary in regions of the input
space that were previously unexplored due to the lack of
representative training samples.

More specifically, let Sul = {S1,S2, . . .Sn} be a set of
unlabeled sequences of si vectors for a particular subject.
We assume that each Sj ∈ Sul is associated with exactly
one class, although we do not know which one. In addition,
let Sl = {S1,S2, . . .Sm} be the set of labeled sequences the
model has already been trained on. The total loss function of
the model during the finetuning stage consists of two terms:

Ltotal = Llab + λLent

= − E
S∈Sl

[log pmodel(y|S)]

− λ E
S∈Sul

[
K∑

k=1

pmodel(y|S) log pmodel(y|S)

]
where Llab corresponds to the standard cross-entropy loss

and Lent to the entropy minimisation penalty. A hyperparam-
eter λ is used to regulate the contribution of the unlabeled
samples to the total loss function. Under this setup, the model
is trained for an additional E2 epochs, using both labeled and
unlabeled samples.

C. Intake cycle detection

Given a trained model and a sequence S̃ representing a
new meal session, food intake cycles can be detected by
using a sliding window approach. A window of length Wl

traverses the score sequence with a shift of Ws and at
each step, which is associated with the timestamp of the
last sample of the window, feeds the extracted sub-sequence
to the trained LSTM. In this way, the probability of food
intake cycle is computed for each timestamp, resulting in a
1-dimensional signal of intake probability versus time. The
signal is smoothed using a median filter to remove very sharp
peaks and subsequently passed through a differentiation filter
to remove large peaks that are too close to each other. Finally,
food intake cycles are identified as the local maxima of the
filtered signal that are above a detection threshold, Td.

III. DATASET

A. Food Intake Cycle Dataset (FIC)

In this work, we use the publicly available FIC dataset.
The FIC dataset contains one meal session recording for 10
different subjects. During each meal, the accelerometer and
gyroscope streams were captured with a sampling rate of
approximately 62Hz, using a Microsoft Band 2 smartwatch.

The ground truth was created by associating each sensor-
generated sample s(t) with the micro-movement the sub-
ject was performing at that t. To this end, an auxiliary
video recording of the meal session was used. The micro-
movement annotations can be used to form the intake cycle
ground-truth, by stipulating that a food intake cycle is a
sequence of micro-movements that always begins with the
micro-movement “pick food”, contains the micro-movement
“mouth” and ends with the micro-movement “downwards”.
The collection protocol, as well as, a detailed description of
the annotation procedure are provided in [1]. The dataset
is publicly available at https://mug.ee.auth.gr/
intake-cycle-detection/.

B. Extended FIC

In addition to the FIC data, we collected additional record-
ings to use as unlabeled samples. In particular, we collected 2
additional recordings from 5 of the 10 subjects of the original
FIC corpus, thus bringing the total number of recorded
sessions for these subjects to three. Due to deprecation, the
Microsoft Band 2 was replaced with a Sony smartwatch,
but the capturing conditions (venue, types of food, etc.)
were otherwise identical to the original recordings. The new
sessions were annotated at a food intake cycle level using
the video recording. This ground truth was not revealed to
our algorithm, but was merely used to segment a session
into relevant sub-sequences that is, sub-sequences that belong
exclusively to one of the two classes of interest.

This additional data collection process resulted in an en-
hanced version of the FIC dataset. This new version contains
multiple meal sessions for 5 subjects of the original corpus
that will be used to accommodate the needs of the semi-
supervised approach. The new dataset will soon be made
publicly available at the same location as the original FIC.

IV. EXPERIMENTS & RESULTS

Training and evaluation was performed by employing a
Leave One Subject Out (LOSO) scheme. Specifically, for
each of the 5 subjects in our extended dataset, we trained
a baseline model for 30 epochs using the labeled sessions of
the rest. The weights of the model after this first training
stage were used as the starting point of the finetuning
stage. This stage used two of the three available sessions
of the left-out subject and ran for 20 epochs. Training of
the baseline model also continued for the same number
of epochs so that both the baseline and the corresponding
finetuned model receive the same amount of training in order
to allow their proper comparison. Evaluation was carried
out in the session of the subject which was left out during
finetuning. This process was repeated 3 times per left-out



T
d

1.0

0.8

0.6

0.4

0.2

0.0
170 180 190 200 210 220 230

False Negative False 

Positive

False 

Positive

True 

Positive

True 

Positive

time (s)

p
ro

tb
a

b
il

it
y

 v
s 

g
t

Fig. 2: Evaluation framework overview.

subject in order to examine all the possible training-testing
splits of the unlabeled data (that is, 2 sessions for finetuning
and 1 session for evaluation). Each of the LOSO iterations
described above was repeated 10 times for all of the 5
subjects that contributed their data to the extended version
of the FIC dataset. Both the baseline and the finetuned
model were trained under the same architecture, including
any modifications mentioned in section II.

The unlabeled loss weight, λ, was set to 0.2, so that
the contribution of each term in the loss function would be
roughly of the same order. The sliding window length, Wl,
was set to 7s and its shift, Ws, was 0.2s at each step. The
detection threshold, Td, was set to 0.7 for all subjects after
experimenting with a small subset of the data.

Given the detection methodology of Section II.C, a detec-
tion peak was considered true positive if it occured within a
positive ground-truth region. However, when more than one
peaks occured within the same positive ground-truth region
(orange rectangle in Fig. 2), we consider only the first as a
true positive and the rest as false positives (see Fig. 2).

According to this evaluation framework, the performance
metrics of our approach for each subject of the LOSO scheme
were computed. A comparison with the baseline approach is
provided in TABLE II.

Baseline Finetuning
Subject Precision Recall F-score Precision Recall F-score

1 0.913 0.750 0.822 0.890 0.831 0.860
2 0.955 0.986 0.970 0.952 0.986 0.969
3 0.951 0.876 0.911 0.942 0.916 0.929
4 0.899 0.951 0.923 0.882 0.955 0.917
5 0.964 0.881 0.919 0.962 0.892 0.925

Average 0.936 0.888 0.909 0.925 0.916 0.920

TABLE II: Comparison of performance metrics obtained by
the baseline and the proposed method, averaged over 10
independent trials.

Based on these early results, we notice that the finetuning
process results in increased recall scores accompanied by a
small tradeoff in precision, thus leading to an overall increase
in F-score in most cases. Moreover, we notice that subjects
whose baseline performance is lower (e.g. subject 1), tend
to benefit more from the finetuning stage than others for
whom the baseline model was already performing well (e.g.
subject 2). This trend highlights the potential of obtaining

meaningful improvements in performance for subjects whose
eating style is underepresented in the original training set and
for which, consequently, a pre-trained model will likely fall
short. Finally, it is worth mentioning that if the food type
of the evaluation meal was represented in the data used for
finetuning then the latter was more likely to succeed.

V. CONCLUSIONS

We have presented a method for adapting a pre-trained
IMU-based food intake cycle detection model to a new
subject using a semi-supervised learning approach. Early
results indicate that unlabeled samples can indeed be used to
correct the decision boundaries of the pre-trained model in
unexplored regions of space. Evaluation on an extension of
the FIC dataset, shows improvements of the proposed method
over the baseline on average. Collection of a significantly
larger dataset with multiple meals per subject is underway
in order to fully explore the potential of the method.
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