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Abstract— Detecting chewing sounds from a microphone
placed inside the outer ear for eating behaviour monitoring still
remains a challenging task. This is mainly due the difficulty
in discriminating non-chewing sounds (e.g. speech or sounds
caused by walking) from chews, as well as due to to the high
variability of the chewing sounds of different food types. Most
approaches rely on detecting distictive structures on the sound
wave, or on extracting a set of features and using a classifier to
detect chews. In this work, we propose to use feature-learning
in the time domain with 1-dimensional convolutional neural
networks for for chewing detection. We apply a network of
convolutional layers followed by fully connected layers directly
on windows of the audio samples to detect chewing activity, and
then aggregate individual chews to eating events. Experimental
results on a large, semi-free living dataset collected in the
context of the SPLENDID project indicate high effectiveness,
with an accuracy of 0.980 and F1 score of 0.883.

I. INTRODUCTION

Automatic detection of eating activity using wearable
sensors is a research problem that has been active for the
past decade, with several promising applications related to
the prevention of obesity [1], or more generally for the adop-
tion of a more healthy lifestyle. Proposed sensors include
microphones worn inside the ear [2] or around the neck [3],
strain sensors [4], electromyography sensors [5], or wrist-
worn motion sensors [6].

Detection of chewing sounds from microphones is one
of the earliest explored modalities. Most commonly, audio
is captured by a microphone placed inside the ear, usually
inside the outer ear canal, as this positioning naturally
amplifies body generated sounds such as chewing sounds,
and also attenuates external and environmental sounds. Var-
ious approaches have been proposed for extracting chewing
related information from audio signals. In [7], a total of
seven algorithms are evaluated; some of them compute a
rectified version of the audio energy signal and then detect
peaks as chews, while others use the same rectified energy
signal to detect periodical events in the 0 - 2Hz frequency
range. In the works of [3], [8] audio is processed and features
are extracted, including spectral, wavelet-based, and higher-
order statistics; the features are then used by a classfier to
characterize audio segments as swallowing [3] or chewing
[8] respectively.
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All these are based on “hand-crafted” features extracted
from the audio signal and on well-studied classification al-
gorithms, such as Support Vector Machines. However recent
advances in machine learning and especially deep neural net-
works now enable evaluation of feature learning approaches
for the detection of eating. Deep learning and convolutional
neural networks (CNN) in particular, have been extremely
successful in computer vision applications (e.g. [9]). Deep
neural networks and CNNs have also been applied to audio
signals [10]. In [11] a deep belief network was trained on
mel-frequency cepstral coefficients (MFCC) for automatic
speech recognition (ASR); these features were chosen to
reduce the computational burden (compared to using raw
audio segments) since they are known to be discriminative
for speech applications. Experimental results on the TIMIT1

database improved over state-of-the-art approaches based on
Hidden Markov Models by achieving the lowest error rate.

In the more recent work of [12], [13] CNNs were applied
directly on raw audio signals for ASR. In [12] authors used
CNNs combined with conditional random fields to train an
end-to-end system, improving over an MFCC-based baseline
approach both on TIMIT and Wall Street Journal (WSJ)
datasets. In [13] the authors also evaluated the cross-domain
effectiveness of the learned features on TIMIT and WSJ.
Error rates were similar when testing on TIMIT (approxi-
mately 32%); however, testing on WSJ seemed to benefit
when features were learned on WSJ (6.7%) instead of TIMIT
(10.1%).

In this work we apply CNNs on audio recordings from
an ear-worn microphone for the task of chewing detection.
Contrary to MFCC in ASR problems, no feature stands
out as being discriminative for detecting chews (although
several have been tested). We thus apply the CNNs on a
lightly pre-processed version of the raw audio signals. The
output of the CNN is smoothed and aggregated to chewing
bouts and then to eating sessions (based on the aggregation
method proposed in [8]). We apply our method to a large (60
hours) semi-free living dataset recorded in the context of the
SPLENDID project. Experimental results show that the CNN
approach is very promising, since it achieves a significant
effectiveness improvement compared to existing state-of-
the-art approaches. The rest of this paper is organised as
follows. Section II presents the processing pipeline, focusing
on the CNN architecture. Section III presents the dataset,
evaluation methods and experimental results. Finally, Section
IV concludes the paper.

1https://catalog.ldc.upenn.edu/ldc93s1



II. DESIGNING A CNN FOR CHEWING DETECTION

Initially, we perform a pre-processing step to the audio
signals. The original sampling frequency of 48 kHz is too
high and would significantly increase the computational
requirements due to longer filters and increased number of
neurons. We thus apply a low-pass filter on the signals and
downsample them at 2 kHz; this frequency is also used in
[8], [14] (which we use as reference in our experiments).
Furthermore, we apply an FIR high-pass filter with cut-
off frequency at 20Hz to remove the very low frequencies
of the signal caused by amplifier drift and environmental
conditions (e.g. blowing wind while the participants were
walking outdoors).

The input to the CNNs are audio segments (windows)
of the filtered audio signal. We experiment with different
window lengths based on two different approaches: (a) longer
windows, e.g. 5 sec, that capture the periodic/rhythmic nature
of consecutive chews, and (b) shorter windows, e.g. 1 sec,
that capture the morphology of a single chew. The window
step is fixed to 0.1 sec. Experimenting with various configu-
rations has shown that five convolutional layers are sufficient
to yield promising results without excessively increasing the
number of model parameters.

The number of filters of the convolutional layers increases
exponentially with depth (except for the fifth layer); in par-
ticular we set 8, 16, 32, 64 and 64 filters for each layer. The
filters’ length is set to 16 for layers 1-4 and is approximately
doubled for the fifth, to account for the duration of one chew
(approximately 0.5 sec. At each layer, full convolution is
performed and Rectified Linear Unit (ReLU) activations are
used. Performing full convolution on the last layer enables
the detection of chews in the window without having to
exactly align it to the filters; this allows for the relatively
long window step of 0.1 sec, which we use.

Each convolutional layer is followed by a max pooling
layer with a step of either 2 or 4. These values are chosen
differently for each window length; for the longest window
(5 sec) the step is set to 4 for all layers, whereas for the
shortest window only the fifth layer’s step is set to 4. The
different configurations are also shown in Table I.

Each configuration includes three fully connected layers
after the fifth max pooling layer; the corresponding numbers
of neurons are 200, 200 and 2. The two outputs p1 and p2
of the last softmax layer correspond to chewing and non-
chewing respectively. We also apply dropout [15] on the
two layers of 200 neurons to avoid overfitting. The dropout
probability is set to 0.5. The training step maximises the
cross entropy of the of the CNN output and the window
label for each training batch

H = −
n∑

i=1

c(i) ∗ log(p1(i)) + (1− c(i)) ∗ log(p2(i)) (1)

where n is the batch length (we have set n = 16). The
indicator c(i) is the ground truth label for the i-th window
of the training batch based on whether the window’s centre
point (in time) lies inside an eating event (c(i) = 1) or not

TABLE I: CNN architectures per window length; notation is
“[no. of filters] × [filter length], [max pooling step]”.

5 sec 3 sec 2 sec 1 sec

1 8× 16, 4 8× 16, 2 8× 16, 2 8× 16, 2
2 16× 16, 4 16× 16, 2 16× 16, 2 16× 16, 2
3 32× 16, 4 32× 16, 4 32× 16, 2 32× 16, 2
4 64× 16, 4 64× 16, 4 64× 16, 2 64× 16, 2
5 64× 39, 4 64× 23, 4 64× 31, 2 64× 31, 4
6 200 fully connected neurons with 0.5 dropout probability
7 200 fully connected neurons with 0.5 dropout probability
8 2 fully connected neurons (outputs y1, y2) and softmax (p1, p2)

(c(i) = 0). The windows of each batch are chosen randomly,
however we make sure that each batch contains 50% positive
windows. In the experiments, we use TensorFlow2 and the
Adam optimiser [16] with an initial step of 16−4 and train
for 5 · 105 epochs.

In order to detect eating events, we apply the trained model
on the test audio signals and derive the output sequence
for the chewing class y1(n) (output before softmax), at the
rate of 10Hz based on the selected window step. We apply
smoothing using a 3 sec filter from a normalised hamming
window (we have experimented with lengths from 0-10 sec)
to produce a smoothed output y′1(n) and then threshold
the y′1(n) sequence with 0. We interpret positive values as
chewing and negative values as non-chewing. This boolean
indicator signal is then aggregated into chewing bouts using
the method of [8].

More specifically, detections which are closer than 2 sec
are merged and the ones with duration less than 5 sec are
discarded. This aggregates detections into chewing bouts.
Then, chewing bouts are aggregated into snacks by merging
successive chewing bouts which are up to 1min apart.
A final pruning step removes snacks which last less than
30 sec or are covered by chewing bouts less than 25%.
A MATLAB implementation of the aggregation method is
available through GitHub3.

III. DATASET & EXPERIMENTAL EVALUATION

Audio signals were collected at Wageningen University
during the summer of 2015. The recordings were performed
in the context of the EU funded SPLENDID project, us-
ing an in-ear microphone, Knowles FG-23329-D65 housed
an a commercial ear bud, at 48 kHz. The ear bud also
houses a (photoplethysmography) PPG sensor, and a belt-
mounted 3D accelerometer was worn by the participants.
Both the PPG and the accelerometer signals were recorded
at 64

3 Hz. The dataset includes 26 recording sessions from
14 participants, with total duration approximately 60 hours.
During the recording trials, each participant had two main
meals; they started with lunch, followed by a unscripted
period, and conluded with dinner at the end of the day.
During the unscripted period they were free to live the
university premises, but were instructed to perform some

2tensorflow.org
3github.com/mug-auth/chewing-detection-challenge
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Fig. 1: The proposed CNN architecture for the 5 sec input window.

physical activities and have at least three snacks. More details
about the sensors and the dataset can be found in [17]. We
selected 4 participants, each with a single recording session,
as the test set; the recording sessions from the remaining 10
participants were used as the training set. This selection was
made randomly, prior to any experimentation and was not
changed thereafter.

We evaluate the performance of our method using five
metrics: precision, recall, accuracy, weighted accuracy and
F1 score. We use weighted accuracy with weight w = 6.9
based on the dataset’s prior probability for the chewing class.
We present three evaluation methods, as per [8]:

• Average duration-based evaluation: where the metrics
are computed for each of the four participants of the
test set and then averaged

• Cumulative duration-based evaluation: where the met-
rics are computed once for the entire duration of the
dataset

• Event-based evaluation: where a one-to-one matching
is performed based on overlapping duration (only one
match per eating event, and only if the overlap exceeds
75%.

Results are shown on Table II, sorted by decreasing F1
score. We also include results from [8], for comparison
purposes. “Audio” refers to an algorithm which uses only
the audio signal, while the “Fusion+” algorithm (included
for reference) uses also PPG and accelerometer signals. The
training and test is performed on the same split we use for the
CNNs. In addition, we also include “leave-one-subject-out”
results for these two algorithms, denoted “Audio (LOSO)”
and “Fusion+ (LOSO)” respectively. Thus, only “Audio” is
directly comparable with the proposed method (since they
use the same input).

Results show that the CNN with 5 sec input window
achieves 0.89 precision and 0.92 recall, and 0.95 weighted
accuracy. These results are better than all other CNNs as
well as the previous “Audio” approach of [8]. Furthermore,
the proposed CNN approach outperforms “Fusion+” for

Fig. 2: An example of the output of the 5 sec input window
CNN, and the derived detections of eating events. The first
detected event is not matched to any of the first two ground
truch events due to low overlapping duration.

most metrics of duration-based evaluation methods. This is
surprising, given that the “Fusion+” approach uses additional
sources of information (PPG and accelerometer, in addition
to audio).

From the other CNNs, the 2 sec input window configura-
tion also demonstrates high effectiveness both in precision
and recall. It is noteworthy that the 5 and 2 sec CNNs seem
to be complementing each other in recall and precision re-
spectively; this could indicate that a suitable combination of
the two configurations could lead to very high effectiveness
in both metrics combined, however we did not test mixing
different input window lengths in this work.

For the event-based detection, the fusion of PPG, audio
and accelerometer signals of [8] still yields the highest F1
score of 0.734. The 5 sec CNN effectiveness is comparable
however, achieving 0.706 F1 score; this difference is caused
mainly by the relatively lower recall of 0.75. This in turn
is mainly due to certain long eating events detected by the
CNN as multiple, fragmented eating events, yielding false
positives in the event-based evaluation. Such an example is
shown in Figure 2, where the first detected eating event is not
matched to any of the first two ground truth events, yielding
one false positive and two false negative events (the second
detected event is matched with the third ground truth event
yielding one true positive).



TABLE II: Evaluation results for the proposed CNN architec-
tures for precision, recall, accuracy, weighted accuracy and
F1 score. including results from [8] for audio only (Audio)
and combined audio, PPG and accelerometer (Fusion+).

(a) Average duration-based evaluation

prec. rec. acc. w. acc. F1

5 sec 0.796 0.991 0.980 0.984 0.883
3 sec 0.576 0.999 0.945 0.961 0.731
2 sec 0.991 0.793 0.984 0.925 0.881
1 sec 0.988 0.692 0.976 0.889 0.814
Audio 0.215 0.700 0.708 0.704 0.329

Audio (LOSO) 0.633 0.809 0.880 0.861 0.650
Fusion+ 0.226 0.687 0.729 0.713 0.340
Fusion+ (LOSO) 0.794 0.807 0.938 0.892 0.761

(b) Cumulative duration-based evaluation

prec. rec. acc. w. acc. F1

5 sec 0.890 0.927 0.976 0.955 0.908
3 sec 0.812 0.883 0.959 0.927 0.846
2 sec 0.938 0.811 0.969 0.902 0.870
1 sec 0.956 0.745 0.963 0.870 0.838
Audio 0.294 0.714 0.263 0.572 0.417

Audio (LOSO) 0.476 0.811 0.861 0.840 0.600
Fusion+ 0.321 0.643 0.273 0.537 0.429
Fusion+ (LOSO) 0.702 0.800 0.931 0.875 0.748

(c) Event-based evaluation

prec. rec. F1

5 sec 0.667 0.750 0.706
3 sec 0.348 0.500 0.410
2 sec 0.429 0.563 0.486
1 sec 0.600 0.562 0.581
Audio 0.215 0.700 0.329

Audio 0.447 0.837 0.583
Fusion+ 0.408 0.549 0.468
Fusion+ (LOSO) 0.677 0.802 0.734

IV. CONCLUSIONS & FUTURE WORK

In this work we have presented a method for detection
chewing activity from an in-ear microphone using CNN. To
the best of our knowledge, this is the first attempt of using
CNN for chewing detection. We experiment with various
configurations and propose a network of five convolutional
layers followed by two fully connected layers and two
outputs. We train and evaluate our method on a large,
challenging, and semi-free living dataset collected in the
context of SPLENDID project, and obtain high effectiveness
results, achieving 0.984 weighted accuracy and 0.883 F1
score for average duration-based evaluation (0.955 and 0.908
for cumulative duration-based evaluation). The best CNN
configuration of 5 sec input window outperforms the current
state-of-the-art approach for the same audio signals, and also
outperforms, in most cases, a multi-sensor approach that
combines the audio with PPG and accelerometer signals.
Future work includes exploring the concurrent detection of
chewing from multiple windows as well as the application

of CNNs for the fusion of different sources (PPG and
accelerometer) for chewing detection.
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