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Abstract— Monitoring of eating behavior using wearable
technology is receiving increased attention, driven by the
recent advances in wearable devices and mobile phones. One
particularly interesting aspect of eating behavior is the mon-
itoring of chewing activity and eating occurrences. There are
several chewing sensor types and chewing detection algorithms
proposed in the bibliography, however no datasets are publicly
available to facilitate evaluation and further research. In this
paper, we present a multi-modal dataset of over 60 hours of
recordings from 14 participants in semi-free living conditions,
collected in the context of the SPLENDID project. The dataset
includes raw signals from a photoplethysmography (PPG)
sensor and a 3D accelerometer, and a set of extracted features
from audio recordings; detailed annotations and ground truth
are also provided both at eating event level and at individual
chew level. We also provide a baseline evaluation method, and
introduce the “challenge” of improving the baseline chewing de-
tection algorithms. The dataset can be downloaded from http:
//dx.doi.org/10.17026/dans-zxw-v8gy, and supple-
mentary code can be downloaded from https://github.
com/mug-auth/chewing-detection-challenge.git.

I. INTRODUCTION

Recently, automated monitoring of eating habits has re-
ceived increased interest both by the research community
(to study eating behavior) and for commercial applications
(to support objective dietary monitoring). For example, in
the case of the SPLENDID project [1], a prototype chewing
sensor [2] is used to objectively measure eating occurrences
and help users restrict their snacking [3].

Most approaches targeting the automatic detection of eat-
ing activity usually rely on detecting chews and/or swallows.
Based on these, chewing bouts, and subsequently eating
events (such as lunch, dinner, short snacks, etc) can be
identified and reported [2]. One of the first and most common
modalities that are deployed for detecting chewing and
swallowing is audio; it is usually captured by microphones
mounted either inside the ear [4]–[7], to capture chewing
sounds, or around the throat [8], to capture swallowing
sounds.

Additional sensors have also been employed to the task; in
[9], [10] authors use strain sensors to detect chewing activity,
while in [11] a photoplethysmography (PPG) sensor housed
inside an ear hook is used to detect chewing activity through
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light fluctuations. In [2], this PPG sensor is combined with
an in-ear microphone and a belt-mounted accelerometer to
further improve chewing detection. In [12] audio and strain
sensors are combined to detect both chews and swallows.

The effectiveness of such monitoring systems has been
increasing, as new sensors and detection algorithms are
being explored. However, development and evaluation of
new algorithms and methods requires development data
to be captured, annotated, and analyzed. Conducting data
collection trials is a challenging task; it requires careful plan-
ning, financial resources, time, ethical permissions, trained
supervising staff during the trial, data curation and laborious
annotation work. Currently, to the best of our knowledge, no
publicly available datasets from such chewing sensors exist.

In this paper, we introduce a publicly available dataset
for chewing detection. The dataset has been recorded and
processed in the context of EU-funded project SPLENDID
in 2015 at Wageningen University. The recording equipment
includes an in-ear housed microphone and a PPG sensor, and
a belt-mounted 3D accelerometer. The raw signals from the
PPG sensor and the accelerometer are publicly available. The
original audio recordings, however are not, due to privacy
restrictions. Instead, we provide a set of extracted features
(both from audio and PPG signals) that were used in [2]; in
addition, we include raw audio recordings from two members
of the supervising staff (which include chewing sounds). In
addition, detailed diaries are provided regarding the physical
and eating activity of the participants, as well as timestamps
for eating events. For each eating event, timestamps are also
provided at individual chew level.

The rest of the paper is organized as follows: Section II
provides a detailed description of the recording equipment.
Section III provides information about the recording trials,
e.g. information about the participants, the methodology,
etc. Section IV describes the recorded signals, features,
and statistics of the dataset, and Section V establishes the
chewing detection challenge. Finally, Section VI concludes
the paper.

II. RECORDING EQUIPMENT

The prototype chewing sensor combines an audio micro-
phone and a PPG sensor, housed together in a common
ear hook (see Figure 1). The microphone is the FG-23329-
D65 model from Knowles installed in a commercial ear-bud,
so that it is placed inside the outer ear canal where body-
generated sounds, including chewing sounds, are naturally
amplified due to ear physiology, while external environmen-
tal sounds are somewhat dampened. The PPG sensor includes



(a) The data-logger with the 3D ac-
celerometer connected to the audio
and PPG chewing sensor

(b) Positioning of the
chewing sensor

Fig. 1: The recording equipment

the BPW34FS photo-diode and the SFH4247 light-emitting-
diode (LED), both from Osram. The photo-diode is placed
inside the ear concha facing down and slightly backward,
while the LED is placed behind the ear, facing towards
the photo-diode. The PPG sensor adaptively amplifies the
measured light intensity by taking into account ambient light
levels. The variations in the light, and thus blood flow,
contain information regarding chewing activity [2], [11].

Audio and PPG signals (including control signals for
PPG) are recorded in the prototype data-logger (Figure 1a)
along with the signals from the integrated 3D accelerometer
(model LIS3DH by STMicroelectronics). These are the three
modalities that were captured during the recording trials.
More details about the hardware can be found in [2].

III. DATA COLLECTION

The recording trials were conducted during June of 2015
at Wageningen University. In total, 22 individuals (19 female
and 3 male) with mean age of 22.9 ± 1.9 years and mean
body-mass-index (BMI) of 28± 2.3 kg/m2 participated; 19
of them participated during two different days, two weeks
apart, and the remaining 3 participated during a single day.
Each recording day lasted approximately 5 hours, split into
2 or 3 sessions. Due to hardware failures, a total of 26 such
sessions from 14 participants have been collected lasting
approximately 60 hours.

An overview of a recording day for a single participant is
shown in Figure 2. Each day, three participants were using
the equipment simultaneously. Upon arrival, the participants
were introduced to the system and recording equipment, and
were assisted in wearing the sensors, while the supervising
staff ensured that the sensors were operating and recording
properly. Then, the main recording started and soon the
participants were seated for the first main meal, lunch.
During the main meals, a variety of servings were available,
and participants were free to select any combination and
quantity multiple times. Once the meal was over, participants
were free and could leave the university premises; no specific
script was given to follow. They were instructed however to
include at least three distinct eating activities/events (snacks),
and at least four physical activities (including walking,

Fig. 2: Overview of a recording day; each subject was asked
to perform at least four physical activity (PA) tasks and three
snacking events.

TABLE I: Food types consumed during lunches

Type Day 1 Day 2

Bread Sliced bread, crackers Soft buns, Baguette, rusk
Topping Butter, jam, Butter, jam,

chocolate sprinkles, chocolate sprinkles,
chocolate spread, chocolate spread,
peanut butter, cheese, peanut butter, cheese,
sliced meat sliced meat

Fruit Grapes, banana, apple Grapes, banana, apple
Drinks Water, milk, orange juice Water, milk, orange juice

running, playing outside, performing typical household tasks,
etc) in their routine.

The recording day concluded with the participants return-
ing to the university and having the second main meal of
the day, dinner. A different set of servings were available
during dinners. More detailed information regarding the
meals, snacks, and physical activity can be found in the
dataset files and in [2].

IV. COLLECTED SIGNALS & FEATURES

The dataset includes both recorded data as well as detailed
ground truth annotations. The data is organized according to
the recording procedure. For each participant, one or more
sessions are available, as shown in Table IV. The table also
lists the number of eating events and chews and total duration
of the recordings.

TABLE II: Food types consumed during snacks

Type Day 1 Day 2

Fruit Grapes, banana, apple Orange, strawberry, kiwi,
Cookie Bastogne cookie, gingerbread, Hazelnut waffle, spongecake

fruit biscuit caramel waffle
Chips - Potato chips
Candy Hard boiled candy, liquorice, Lollipop, wine, gums

twix bar, chewing gum mars bar
Drinks Coffee, tea, hot chocolate, Coffee, tea, hot chocolate,

water, lemonade, orange water, lemonade, orange
juice, coke juice, coke, milk

TABLE III: Food types consumed during dinners

Type Day 1 Day 2

Potatoes Boiled Puree
Vegetables French beans Salad (lettuce, tomato,

cucumber, boiled egg)
Meat Meatball, wrapped in a slice Chicken schnitzel

of meat
Condiment Gravy Salad dressing
Dessert Custard, vanilla & chocolate Vanilla ice cream



TABLE IV: Dataset statistics

Participant Sessions Events Chews Duration (min)

11 1 4 797 154
31 2 8 2243 320
41 2 6 1171 287
42 1 6 904 164
43 1 3 427 68
51 2 7 1192 296
52 4 10 2269 398
53 2 7 1512 297
61 2 5 1202 316
62 1 2 807 104
63 1 4 670 162
65 2 5 522 210
71 4 16 2274 637
72 1 3 822 162
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Fig. 3: Normalised (per-class) histograms for chewing (pos.)
and non-chewing (neg.) windows of example audio features
(original and 1-min smoothed).

Regarding the recorded data, we provide the raw PPG
signal, sampled at 64

3 Hz, along with two control signals
sampled at the same frequency. These control signals consist
of an index corresponding to the level of the current going
through the LED, and the amplification gain of the A/D con-
verter. The PPG signal values are stored as 15-bit unsigned
integers. A set of ten features are also available correspond-
ing to the non-normalized and normalized (histogram) time
varying spectrum (TVS) in five log-bands (0.0−1.0, 1.0−1.8,
1.8− 3.3, 3.3− 5.9 and 5.9− 10.7 Hz).

Audio was originally recorded at 48 kHz; it was sub-
sequently downsampled at 2 kHz and 15 features were
extracted [2], including the fractal dimension (FD) [7],
condition number (CN) of the 6× 6 auto-correlation matrix,
four 3rd and 4th order statistics and TVS in nine log bands
(0.0 − 4.0, 4.0 − 7.4, 7.4 − 15.8, 15.8 − 31.6, 31.6 − 63.0,
63.0 − 125.9, 125.9 − 251.2, 251.2 − 501.2, and 501.2 −
1000 Hz). The recorded raw audio is not publicly available
due to privacy restrictions. As a reference point regarding
recording quality and conditions, two staff members tested
the equipment a day before the first recording trial; their
recordings are also available (both original recordings at
48 kHz and downsampled at 2 kHz in FLAC format, as well
as the features). Finally, 3D accelerometer signals are also
sampled at 64

3 Hz and are stored as floating point numbers,
measured in gs.

Figure 3 presents histograms of the FD and skewness for
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Fig. 4: Histogram of eating event times (quarter-hour reso-
lution)

the positive (chewing) and negative (non-chewing) classes.
Histograms are shown for both the original features as well
as 1-minute smoothed features by a normalised hamming
window. Each feature seems to be differently distributed for
each class, however a classification model such as an SVM
was shown to achieve high effectiveness. The histograms
for the conditional number might indicate that this feature
does not contain any information that can help classification,
however we have observed that it in fact helps significantly
to distinguish voice segments when combined with other
features.

In Figure 4, a histogram of the mid-point of each eating
event (meal/snack) is shown, in quarter-hour resolution.
There are 24 meals during lunch time (from 12:00 to 13:00)
and 20 meals during dinner (from 17:00 to 18:00). Snacks
occur mostly around 13:45, 15:15, and 16:15.

V. THE SPLENDID CHEWING DETECTION CHALLENGE

We present the following four challenges for the chewing
detection task:

• PPG features: the first challenge is to identify and
extract features from the PPG signal that can be used
to effectively discriminate chewing from non-chewing.
Currently, only spectral features are used [2], [11]
that identify the “rhythmic” pattern of chews within a
chewing bout.

• PPG-based detection: this challenge involves designing
effective chewing detectors based on the features of the
first challenge, or the ones provided with the dataset.

• Audio-based detection: further increasing the effective-
ness of audio-based classifiers.

• Fusion-based detection: combining all available signals
and features to improve detection.

We propose the three evaluation approaches presented in
[2]; evaluation can also be performed at chew-level, based on
the provided ground truth chew annotations. All ground truth
is in the form of start and stop timestamps, for both events
and chews. For the eating event level evaluation, a set of
MATLAB scripts are also available through GitHub, for post-
processing the detection classifiers in order to derive eating
events, and for evaluating the results against the ground truth.
The post-processing scripts aggregate the binary decisions
of the classifiers from individual chews to chewing bouts
by merging chews closer than 2 sec apart and requiring a
minimum chewing bout duration of 5 sec. Chewing bouts
are then aggregated to eating events by merging bouts closer
than 60 sec and requiring that the resulting eating event is
covered at least with 25% by chewing bouts.



TABLE V: Benchmark evaluation results for PPG-based and
Fusion algorithms of [2]. For duration-based evaluation we
prsent precision, recall, accuracy, weighted accuracy, and F1
Score, and for event-based the number of correct detections,
missed detections, and false detections.

(a) Duration-based evaluation

prec. rec. acc. w. acc. F1

L
O

SO

PPG (aver.) 0.341 0.814 0.753 0.767 0.448
Fusion (aver.) 0.760 0.802 0.928 0.886 0.729
PPG (cumul.) 0.278 0.801 0.710 0.749 0.413
Fusion (cumul.) 0.641 0.805 0.918 0.870 0.714

Sp
lit

PPG (aver.) 0.148 0.802 0.511 0.620 0.250
Fusion (aver.) 0.242 0.548 0.780 0.692 0.335
PPG (cumul.) 0.200 0.785 0.190 0.540 0.319
Fusion (cumul.) 0.227 0.714 0.208 0.528 0.433

(b) Event-based evaluation

No. of CDs No. of MDs No. of FDs

L
O

SO PPG 70 16 202
Fusion 69 17 51

Sp
lit PPG 9 7 11

Fusion 9 7 41

Three methods for evaluating the detection algorithms
are proposed. The first two, “average duration-based” and
“cumulative duration-based” measure the duration during
which the detector agrees or disagrees with the ground truth,
thus partitioning each session into true-positive (TP) time,
false-positive (FP) time, true-negative (TN) time, and false-
negative (FN) time. The first method, average duration-based,
computes five metrics, specifically precision, recall, accuracy
and weighted accuracy, and F1 score, based on TP, FP, TN
and FN, for each participant. It then averages each metric
across participants. The second method, cumulative duration-
based, does not average across participants; it instead com-
putes the five metrics on the entire dataset duration, thus
taking into account the variability of total recording duration
across participants.

Finally, the third method, “event-based”, performs a one-
to-one matching among detected and ground truth events,
taking into account their overlap duration which is required
to be at least 75% of their combined duration for the
detected event to be considered a correct detection (CD).
Non-matched ground truth events count as missed detections
(MDs) and non-matched detected events count as false
detections (FDs).

For evaluating alrogithms that require a training step and
a test step, one can follow the “Leave-One-Subject-Out”
(LOSO) procedure [2], or use the train/test split proposed
with the dataset. Table V presents the benchmark evaluation
results of [2] for all three evaluation methods.

VI. CONCLUSIONS & FUTURE WORK

In this paper we have presented a dataset and evaluation
framework for eating event and chewing detection, consisting
of PPG, audio, and acceleration sensor data. The dataset has

been recorded in semi-free living conditions, and extensive
ground truth annotations of eating events and individual
chews are provided.

Results of a baseline evaluation are also included for
comparison purposes. These show that the combination of
all three sensors can yield very high effectiveness for the
eating event detection task. However, there is still room
for improvement for the individual chew detection task and
for PPG-only detection (which is important, given the low
sampling rate and smaller form-factor of the PPG).

The dataset is available at http://dx.doi.org/10.
17026/dans-zxw-v8gy, and supplementary code can be
downloaded from https://github.com/mug-auth/
chewing-detection-challenge.git.
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