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Abstract—The structure of the cumulative food intake (CFI)
curve has been associated with obesity and eating disorders.
Scales that record the weight loss of a plate from which a
subject eats food are used for capturing this curve; however,
their measurements are contaminated by additive noise and are
distorted by certain types of artifacts. This paper presents an
algorithm for automatically processing continuous in-meal weight
measurements in order to extract the clean CFI curve and in-
meal eating indicators, such as total food intake and food intake
rate. The algorithm relies on the representation of the weight-
time series by a string of symbols that correspond to events such
as bites or food additions. A context-free grammar is next used
to model a meal as a sequence of such events. The selection of the
most likely parse tree is finally used to determine the predicted
eating sequence. The algorithm is evaluated on a dataset of 113
meals collected using the Mandometer, a scale that continuously
samples plate weight during eating. We evaluate the effectiveness
for seven indicators, and for bite-instance detection. We compare
our approach with three state-of-the-art algorithms, and achieve
the lowest error rates for most indicators (24 g for total meal
weight). The proposed algorithm extracts the parameters of the
CFI curve automatically, eliminating the need for manual data
processing, and thus facilitating large-scale studies of eating
behavior.

Index Terms—biomedical signal processing, food intake, Man-
dometer, context free grammar

I. INTRODUCTION

HE devastating effects of obesity (OB) on individual

and public health, including increasing prevalence world-
wide and associated cardiovascular and metabolic morbidities,
are too well known to need re-reviewing [1]. The lack of
effective treatments, save gastric surgical intervention, is also
well known. For this reason, treatments based on eating
behavior are receiving increased focus [2]; the periods from
18 to 29 years old [3] and from 12 to 26 [4] are identified as
“high risk” and thus should be heavily targeted.

A new approach emerged from the treatment of patients
with anorexia nervosa [5] (the prototypical eating disorder
from which the other eating disorders, such as bulimia nervosa,
emerge). According to this study, dieting, an important cause
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of underweight as well as overweight [6], rapidly changes
eating behavior. For this reason, eating behavior is the target
of a treatment that has markedly improved outcome [7] while
the same method has also improved the treatment of OB in
children [8]. This method involves the Mandometer, a scale
that continuously measures the weight of the plate, connected
to a monitoring device, such as a computer or a smart phone.

Besides treatment however, prevention is equally, if not
more, important, given the growing spread of OB [1]. Preven-
tion can benefit significantly by robust monitoring systems.
During the last decade, new intervention methods have been
introduced, as technological advancements of smart-phones
and wearable sensors and devices have enabled monitoring
of human, and in particular eating, behavior. To this end,
a wide spectrum of single and multi-sensor approaches can
be found in the literature. In-ear microphone sensors have
been proposed multiple times in the literature and are one of
the most studied sensor type for chewing detection [9], [10].
Microphone sensors have been also used to detect swallowing
sounds when placed near the throat [11]. Strain sensors [12]
and photoplethysmography [13] have also been used to detect
chewing activity. Combinations of such sensors have also
been proposed, for example a strain sensor, a proximity
sensor, and an accelerometer have been combined in [14],
while an in-ear microphone, a photoplethysmography sensor,
and an accelerometer have been combined in [15]. Finally,
algorithms based on wrist-mounted sensors (accelerometers
and gyroscopes) have also been proposed to detect food intake
cycles [16]-[18].

These systems focus on discriminating eating (from non-
eating) activity, and thus mainly detect eating sessions (meals,
snacks, etc); in some cases, additional in-meal indicators
can be extracted, such as duration of the eating session, or
individual bites. As an alternative, recording the weight of the
plate at regular time intervals (e.g. every 1 sec) during a meal
can yield (after some processing) the cumulative food intake
(CFI) curve, a weight versus time curve that corresponds to
the total weight of food that has been consumed since the
beginning of the meal. Based on this CFI curve, a number
of in-meal indicators can be extracted, such as total meal
duration, total weight of consumed food, and number of bites
(see Section IV). One additional such in-meal indicator is
the eating pattern, which can be linear or decelerated [19].
According to [19], the CFI curve can be modeled using a
smoothed approximation: a quadratic curve of the following
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Fig. 1. The Mandometer, version 5.

form
wy(t) = at® + Bt (D

where « is the intake weight acceleration, ( is the initial (at
t = 0 sec) rate of intake weight, and t € [0, t4,] denotes
time (with t4,, being the duration of the meal). There is no
constant term in the quadratic model, as the origin is required
to belong to the curve by the assumption that no food has been
consumed at the beginning of the meal, i.e. wq(0) = 0.

Based on «, one can be classified as a linear or decelerated
eater [20], [21]. In linear eating, a person consumes food
(measured by weight) at a constant rate, while in decelerated
eating the eating rate decreases over the course of the meal
[20], [21]. People suffering from OB or any ED tend to
eat in a linear fashion (o« ~ (), while healthy individuals
tend to eat in a decelerated manner (o < 0) [21]. In [8],
decreasing an obese person’s eating rate and the amount of
food to be consumed was found to contribute to weight loss,
supporting its suggested role in treatment [22]. Remarkably,
this intervention also normalized hormonal secretions [23].
Conversely, increasing the speed of eating and the amount of
food to be consumed increases body weight and restores the
health of severely emaciated anorexic patients [5].

Extracting the eating pattern during a meal requires contin-
uous measurement of the weight of the consumed food. The
Mandometer is a device than can be used for this task (Figure
1); it is a plate scale that is placed on the table, and the plate
with food is placed on scale. The device samples the weight
of the plate and the food wyy[n],n = 0,1,..., Ny — 1 at
a constant rate (1 Hz in the latest version). Based on these
measurements and a video recording of the meal, the CFI
curve is calculated as wcp[n],n = 0,1,..., Ncg — 1, which
corresponds to the total weight of food that has been consumed
by the subject at a given time. An example of a recorded meal
and its CFI curve are shown in Figure 2.

Even though the Mandometer is a small and portable device,
its application is limited by the need for expert manual
annotation of the recording. The standard process in the clinic
involves setting up one or more video cameras around the
table that record the entire eating session. Afterwards, the
recording is synchronized with the video stream, and a clinical
expert manually watches and annotates bites, which are then
used to manually process the recording in order to derive
the CFI curve. For use of the device at home, an expert
has to obtain the data and process them without any video
recordings, which can decrease accuracy. Once the CFI curve
is available, the quadratic model and any additional indicators
can be extracted directly. However, the requirement for manual
processing limits the scale at which the Mandometer can be
applied. In addition, performing large-scale statistical analysis
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Fig. 2. An example of a raw Mandometer recording of a meal; the raw
recording wraw[n] is generally decreasing as food is consumed, and there are
two food additions at 320 and 590 sec. The corresponding CFI curve wgic[n]
quadratic model wq([n] are also shown.

is also subject to the burden of manual processing hundreds
or thousands of meal recordings.

Alternatively, the CFI curve can be obtained automatically,
without the requirements for video recording and laborious
manual annotation and processing, using an algorithm [24],
[25]. Obtaining the CFI curve however is not a trivial task.
The recorded Mandometer measurements wy,y[n] do not only
contain the discrete weight decreases that correspond to bites
being removed from the plate to be consumed, but are also
contaminated by events that do not contribute to food con-
sumption. Such events can correspond to the pressure applied
by the utensils to the plate, temporarily resting utensils on the
plate, etc. In non-controlled environments, additional events
can contaminate the measurements, such as adding food to
the plate (see Figure 2), taking a bite from a large piece of
food and then putting the remaining food back on the plate,
or taking several bites before putting the remaining food on
the plate, etc.

In this work, we present an algorithm that automates the ex-
traction of meal-related indicators by calculating the CFI curve
of a meal based only on continuous weight measurements
from the Mandometer. The algorithm is based on modeling
a meal with a context-free grammar (CFG). After an initial
pre-processing stage, the raw recording is partitioned into
segments and a CFG terminal symbol is assigned to each
segment, thus forming a string. All possible parse trees of
the string are evaluated and the most likely tree is selected
to interpret the meal events. Based on the obtained tree, we
calculate the CFI curve and extract various in-meal indicators
from the CFI. We evaluate our algorithm on a dataset of
113 non-controlled meals collected in the context of the EU
SPLENDID project! [26], and compare with three state-of-
the-art algorithms [24], [25], [27].

The rest of this paper is organized as follows: Section II
presents related work for processing meal weight recordings.
Section III presents the proposed algorithm that calculates

'The aim of SPLENDID is to provide personalized services guiding ado-
lescents and young adults to healthy eating and activity behaviors, preventing
the onset of obesity and eating disorders, by leveraging existing and novel
prototype sensors. http://splendid-program.eu/
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the CFI curve while Section IV presents the list of extracted
eating-behavior indicators. Section V presents the collected
evaluation dataset, the evaluation methodology, and the exper-
imental results. Finally, Section VI concludes the paper.

II. RELATED WORK

Regarding computing the CFI curve from Mandometer
measurements, we have already published two works [24],
[25]. In [24], three preliminary algorithms are presented. The
first one, named rule-based (RB) is a set of heuristic rules
for detecting food additions; additional heuristics for detecting
inactivity at the beginning and end of the meal are also part of
the algorithm. The RB algorithm relies heavily on predefined
thresholds. In order to reduce the need for calibrating thresh-
olds, the second algorithm, named rule-based quadratic fitting
(RBQF) uses thresholds that yield high recall for detecting
candidate food additions. Then, all possible combinations of
candidate food additions are considered, and the mean-squared
error of each CFI curve and fitted quadratic model is used
to rank the combinations; the one achieving the lowest error
is selected as the final result. Finally, the third algorithm,
named greedy quadratic fitting (GQF) operates iteratively on
the measurements; once a candidate food addition is detected,
the previous measurements are used to accept or reject it, based
on two mean-squared errors of two different quadratic curves
(one corresponding to accepting the candidate food addition
and one to rejecting it).

In [25], a PCFG is introduced to interpret the events that
occur during a meal, in particular bites, food additions, and
artifacts (pressure on the plate while cutting or using the fork,
or temporarily rest of a utensil on the plate). Each weight
measurement is directly assigned one terminal symbol based
on the derivative (sample difference). All parse trees are then
computed, and a probability is assigned to each based on the
probabilities of all events (bites, food additions, and artifacts)
of the parse tree. The probability for each of the three event
types is modeled using a parametric function; the parameters
depend on various attributes of each event (e.g. for the bite
event type, the function depends on the weight of the bite).
The most probable parse tree is selected as the interpretation
of the meal measurements and is used to calculate the CFI
curve.

Another device similar to the Mandometer is the univer-
sal eating monitor (UEM), a table-embedded scale that also
records food weight during eating. The UEM can support
an entire tray that holds both plates and glasses. In [27],
an algorithm is proposed that automatically processes an
UEM meal session recording to detect bites. The algorithm
initially detects “stable” time intervals of the recording during
which the weight standard deviation is less than an accepted
threshold. Then, the transitions from a stable time interval to
another are examined, and a set of threshold rules are used to
detect three different bite types: single food bites, food mass
bites, and drink bites. Authors report a recall of 0.39 for single
food and food mass bites, and also 0.39 for drink bites.

A preliminary version of our approach has been reported
in [25] where we use a PCFG to model a meal. CFGs are

extended to PCFGs by assigning a probability to each rule;
these probabilities must satisfy certain requirements [28], [29].
However, using a PCFG as a method to select the parse tree
that “best” interprets a meal is not very suitable. First, a PCFG
assigns a probability to each rule so that the sum of probabil-
ities for all rules that substitute the same non-terminal symbol
must equal one, essentially defining a distribution among the
possible substitutions of that non-terminal. Although one can
argue that bites occur more frequently than a food addition, the
distribution can depend on other parameters such as the total
length of the meal, and thus might not be easy to estimate.
Furthermore, PCFGs assign a constant probability to each rule,
however, the rule B — b (this rule assigns a bite B to a weight
decrease b, see Section III-B) can have different probability
depending on the weight decrease b corresponds to (e.g. a
bite of 6 g is more likely than a bite of 100 g). Finally, due to
independence assumption of PCFGs, longer (sub)strings tend
to be less probable. The main differences of our approach and
the one presented in [25] are

1) All signal processing before applying the grammars is
different. In particular, [25] uses morphological opera-
tors (opening) to manipulate the raw data into a suitable
form for the PCFG, while the algorithm proposed in
this paper uses a different, three-stage pre-processing
approach (see Section III-A).

2) The terminal symbols are applied in a different man-
ner. In particular, [25] assigns one terminal symbol to
each sample of the raw recording, while the algorithm
proposed in this paper partitions the raw recording into
segments of varying length, and assigns a terminal
symbol to each segment.

3) The grammar is expanded with a rule for bites where
some food is picked up from the plate, a bite is taken,
and the remaining food is placed back on the plate. Also,
some pruning is performed to reduce the computational
complexity of parsing.

4) The ranking method for the parse trees is different. In
particular, [25] uses ad-hoc distributions to select the
probability of each rule, while the algorithm proposed
in this paper is data-driven; known distributions are fitted
to training data and are then used to derive the likelihood
for each event (bite, food addition, and artifact).

5) The post-processing is completely different. In par-
ticular, [25] removes the detected food additions and
artifacts and then extracts the CFI curve, while the
algorithm proposed in this paper directly computes the
CFI curve based on detected bite events.

III. FOOD INTAKE CURVE ALGORITHM
A. Pre-processing and segmentation

Initially, we perform three pre-processing steps to prepare
the raw data for segmentation, as shown in Figure 3. First,
the recording w,y [n] is pre-processed to remove “jitter”; jitter
can occur during inactive moments when the recorded weight
might increase or decrease by 1 g, and a few samples later
might return to the original value, without any other weight
change in-between. Next, the plate weight which is sampled
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Fig. 3. Examples of the pre-processing steps. Input and output of each step is
drawn with a continuous blue and a dashed red line respectively. Grey areas
in Figure 3c mark stable time intervals.

before the meal starts is subtracted from all weight samples,
and negative values are set to zero. Finally, samples are
characterized as stable or unstable; a sample is stable if its
weight is equal to the weight of either the previous or the
next sample (i.e. time intervals where the recorded weight is
constant, see Figure 3c). The weight of each unstable sample is
then explicitly set equal to the weight of the closest past stable
sample. The meal recording after the pre-processing steps is
denoted wn].

We then segment w[n] into three types of intervals, one type
for each terminal symbol of the CFG; r-intervals (“important”
weight increase/rise), d-intervals (big weight decrease), and b-
intervals (small weight decrease). The need for these three
terminal symbols and the way that they are used in the CFG
are described in the next Section (Section III-B). Segmenting
w[n] is based on the forward derivative A[n] and the delta
coefficients dp[n], which are computed as

Aln] =wn+1] —wn,n=0,1,...,N—=2  (2)
dp[n] = hp[n] * wn],n=0,1,...,N =1 3)

where * denotes convolution and hp[n] is the impulse re-
sponse of an FIR filter with 2D + 1 taps given by
n

YL pit
The delta coefficients have been used extensively in speech
processing [30], [31], and capture the “trend” of w[n] (increas-
ing or decreasing) using an interval of 2D + 1 samples, thus
providing an estimation of the derivative that is less sensitive
to short-term changes (depending on the value of D). This
property is very useful in identifying events such as food
additions; food additions are recorded as sudden increases
in weight, however, similar increases can be recorded when
pressured is applied by fork and knife before a bite. In both
cases the derivative A[n] exhibits high values during the
weight increase, however the delta coefficients dp[n] exhibit
high values only in the case of food addition (see also Figure
4). In our work, we have selected a window of 1 minute for
the estimation of dp[n], and we have thus set D = 30 given
the 1 Hz sampling rate; thus, the denominator of Equation 4
is constant.

Important weight increases are detected using the following
method (Figure 4 illustrates an example). Non-overlapping
time intervals [s1[k], s2[k]], are detected such that all delta co-
efficients are positive, i.e. p[n] > 0 for all s1[k] < n < s3[k].

hpn] = n=-D,...,D 4)
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Fig. 4. An example of detecting r-intervals (bold red line). Based on

dp[n] (dashed green line), two time intervals (gray areas) are detected:
(s1]0],s2[0]) = (13,67) and (s1[1],s2[1]) = (80,94). The maximum
dp[n] per time interval are mo = 30 and my = 87 (burgundy “x”), around
which the r time intervals are detected.

From each such time interval k we mark the index mj of
the highest coefficient in the interval, i.e. dp[my] > dp[n]
for si[k] < n < sglk]. If Almg] > 0 then we find the
longest interval around my, in which w([n] is non-decreasing,
and assign the terminal symbol 7 to it, which corresponds to
a critical weight increase (rise). If A[my] < 0 then we assign
no symbol.

Finally, b-intervals and d-intervals are intervals where
weight strictly decreases. For such a strictly decreasing in-
terval, if the total weight decrease is small enough, i.e. less
than a threshold Ay, the interval is regarded as a b-interval,
otherwise as a d-interval. The threshold Ay, is selected by
thresholding the cumulative normalized histogram of ground
truth bites at 95% (Figure 8b); typical values are close to 20 g
when computed in leave-one-subject-out (LOSO) fashion (see
Section V-B).

An artifical example of a meal is illustrated in Figure 5.
The identified intervals of the segmentation are noted with
different symbols and colors. The curve does not exhibit a
clear decreasing trend, as it is polluted with a food addition,
an artifcact, and a burger bite. Figure 6 shows the same data
after remove the effect of all non-eating behavior; five bites
are clearly visible.

B. Modeling meals as strings

We identify the following three event types: bite (B), food
addition (F"), and artifact (A), where the letters in parenthesis
correspond to the respective non-terminal symbols of the CFG.
Thus, a meal can be modeled as a sequence of events of B,
F, and A (Equation 5).

A bite (B) event type denotes the action of picking up food
from the plate in order to consume it. In it’s simplest form, a
bite causes the measured weight to be decreased by the weight
of the bite (Equation 6, B — b). If multiple bites are taken very
quickly, it is possible that a single, longer, and greater weight
decrease is measured (Equation 6, B — d). However, such
greater weight decreases can be the result of other event types
such as removal of a utensil (e.g. Equation 8). Sometimes,
pressure applied by utensils before a bite can cause weight to
increase momentarily before decreasing. Usually, the weight
increase is filtered out by the third pre-propcessing step (Figure
3c). However, for the cases where the weight increase survives
the filtering, we introduce the third bite rule which describes
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Fig. 5. An artificial example of a meal (black line represents the raw
recording). The segments for each terminal symbol are denoted with different
symbols and colors of dashed lines. Contrary to intuition, the curve is not
decreasing; various events have polluted the curve. In particular, after an
initial bite (blue, 2-3 sec) a utensil is placed on the plate (green, 6-8 sec)
and is removed later on (red, 35-36 sec). A bite of the form dr (Equation
6) occurs at 11-14 sec, and then a food addition (green, 19-20 sec). Three
more bites occur at 22-24, 29-32, and 38-39 sec (blue). The extracted string
is brdrrbbdb. Figure 6 shows the same data after removing the effect of food
additions, artifacts, and simplifying the dr bite.
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Fig. 6. The data of the meal of Figure 5 after removing the effect of

food additions, artifacts, and simplifying the dr bite. The colors for detected
segments are retained for direct comparison with Figure 5. Five bites are now
clearly visible at 2-3, 11-14, 22-24, 29-32, and 38-39. The disimilarities
between this curve and the curve of Figure 5 (even though it is an artificial
example) are an indication of the challenges of the algorithm.

bites as a weight increase followed by a big weight decrease
(Equation 6, B — rd). Finally, we define a fourth type of
bite, that describes bites taken typically from food types such
as burgers or chicken wings: a large portion of the food is
picked up from the plate, registering a significant decrease in
measured weight, a bite is taken, and the remaining food is
placed back on the plate, registering a weight increase that
is however less than the previous weight decrease. Thus, this
type of bites is described by Equation 6, B — dr.

An important note is that a CFG bite event can actually
correspond to multiple “actual” bites, e.g. in the case of many
bites taken too quickly and resulting in a single d, or in the case
of picking up food such as a burger, taking multiple bites and
then putting down the remaining food, resulting in dr. For such
cases, any approach relying exclusively on measured weight
cannot accurately detect all actual bites. This is a known
limitation, however its impact on effectiveness is minimal:
if the weight difference is estimate correctly, the algorithm
will accurately estimated most indicators (such as total food
weight), albeit for a few missed bites.

Food addition (F') refers to the act of adding more food
on the plate (from some other container), thus increasing the
measured weight (Equation 7). The weight usually increases
by greater quantity (compared to the weight decrease of a
bite), while the duration varies.

Finally, the artifact (A) event type corresponds to more
than one action; however, all these actions share the common
characteristic that they result in a weight increase, followed
(instantly or later) by an almost equal weight decrease. Exam-
ples of such actions are temporarily resting a utensil or other
item on the plate, resting one’s hand, etc. For such types of
actions, any combination of meal events can occur between the
placing and removal of the extra weight. All this behavior can
be modeled by Equation 8; r and d correspond to the weight
increase and decrease, while S allows for any (or none) events
to take place in-between.

Thus, the CFG we use is formally defined as G =
{V,X,R,S}, where V = {S,B,F, A e b,d,r} is the al-
phabet, 3 = {b,d,r,e} is the set of terminal symbols,
R C (V — X¥) x V* is the following set of rules

S — BS|FS|AS|e (5)
B — bld|rd|dr (6)
F—r @)
A—rSd (8)

S is the start symbol, e is the empty string symbol, and * is
the Kleene star operator [32]. Note that L(G) = X*, i.e. the
language generated by G is the set of all possible strings that
can be obtained by concatenating any combination of the CFG
terminal symbols.

An efficient algorithm for parsing CFGs that does not
require the CFG to be in Chomsky normal form [32] has been
proposed by Jay Earley [33]. We use our Java implementation
available on GitHub? to compute all parse trees T; of the
string s. An example of a parse for the artificial meal of
Figure 5 is shown in Figure 7. Each tree corresponds to a
different interpretation of the meal. Thus, an interpretation is
equivalent to a sequence of events Efi], i =0,1,...,Ng—1,
where each event is a B, an F, or an A. In Figure 7 the
sub-tree is denoted with blue color and corresponds to the
sequence By, A, By (subscripts of B; and By are only used
for presentation). However, since A can spawn an entire meal
using the recursive rule of Equation 8, all possible sub-trees
must be taken into account. In Figure 7 the interpretation of
the sub-tree (shown in green color) is the sequence B3 F' B4 Bs5
(again, the subscripts are only used for presentation).

C. Maximum likelihood interpretation

Once the string representation of a meal is obtained, and
all parse trees are available, a method is required to evaluate
each parse tree and select the most likely one. We thus use a
modified version of CFGs, in which we estimate the likelihood
of a parse tree based on parameters derived from w[n]. In
particular, the likelihood £(7;) of the parse tree 7; is obtained

Zhttps://github.com/mug-auth/pcfg-toolbox
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Fig. 7. A parse tree for the meal of Figure 5. The blue S is the tree root.
The meal is interpreted as the sequence of B1ABs, while the artifact A
spawns a sub-tree with the green S as root. The sub-tree is interpreted as
B3 F' B4 Bs. The empty string symbol e has been inserted in the string where
it was required.

based on the event interpretation of the meal, i.e. the sequence
of detected events E[i], as

Ng—1

(1) =[] &) )
1=0

using the naive assumption that each event is independent of
all other events (note that for selecting the most likely parse
tree, our implementation uses in fact the sum of log-likelihood,
which is equivallent and numerically stable). We thus need to
define the likelihood functions for each event type.

We model the likelihood of a bite event B by the following
exponential distribution function

L(B;0p) = \e M (10)

where 0 is the bite weight. Note that bite weight corresponds
directly to the weight decrease for bites described by b and
d, while it corresponds to the total weight decrease for rd
and dr bites (i.e. weight decrease of d minus weight increase
of r). This formula reflects our intuition that bite weights are
in general small, and greater bite weights are less likely to
occur (see Figure 8a). The value of parameter ) is selected by
fitting an exponential distribution on the normalized histogram
of ground truth bites; typical values for A when estimated in
LOSO fashion are close to 8.4.

Food addition weights lie almost uniformly on the entire
range of 0 - 250 g (Figure 9a). Thus, we approximate the
likelihood of a food addition by the sigmoid function

1
1+ efa(G F—C)
where 0 is the weight of the food addition. Parameters a and ¢

are obtained by fitting the sigmoid function on the normalized
cumulative histogram (see Figure 9b). Typical values are close

L(F;0Fp) = (11)
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Fig. 8. Histogram (8a) and normalized cumulative histogram (8b) of ground
truth bite weight.

to 0.02 for a and close to 115 for ¢, when estimated in LOSO
fashion.

Finally, the likelihood of an artifact A is the product of two
independent terms and defined as

(04)2

L(A;04) =€ 27 - L(Ta)

12)

The exponential term is proportional to a Gaussian distribution
with zero mean and standard deviation o, and models the fact
that placing and removing an item (e.g. a utensil) on the scale
increases and then decreases the measured weight by (almost)
the same amount; this corresponds to a substring of the form
rSd (Equation 8) where the weight difference between r and
d is close to 0 g. The Gaussian is in fact scaled so that
L(A;0) = 1- L(T4). The standard deviation o cannot be
directly estimated since there is no available ground truth for
artifacts. However, it can be estimated indirectly based on the
observation that there are substrings of the form rSd which
are not artifacts and r corresponds to a food addition and d
to a bite. Thus, we can estimate the distribution fr_pg of the
“food-addition-weight minus bite-weight” combinations as®

fr-p(x) = fr(z)* f-p(x) (13)

where fr is the empirical distribution (histogram) of ground
truth food addition weights, and f_ g is the empirical distribu-
tion of ground truth bite weights (note that ground truth bite
weights are used with a negative sign). By thresholding the
cumulative distribution of fr_p at 5% we can obtain a value
for parameter o; typical values for o when estimated in LOSO
fashion are 4 and 5 g.

The term £(74) is the likelihood of the sub-tree spawning
from the S of Equation 8, and is computed in the same way
as for any parse tree (Equation 9). If there is no sub-tree (S
is eliminated using the last alternative of Equation 5), we set

L(Ta)=1.

D. Calculating the CFI curve

Based on the above, the most likely ’7} is selected, and is
used to construct the CFI curve based on the detected bites
(since only bites correspond to intake activity). In particular,

3based on the fact that the probability density function (PDF) of the sum
X 4+ Y of random variables X and Y is the convolution of their PDFs fx
and fy
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Fig. 9. Histogram (9a) and normalized cumulative histogram (9b) of ground
truth food addition weight.

let the pairs (tg[i],wp[i]), ¢ = 0,1,..., N — 1 denote the
time-stamp and weight of each bite. The CFI curve wcg[n]
is obtained by sample-hold interpolation of (¢5[i], wg[i]) at 1
Hz. Also, the time before the first bite (0 to ¢5[0] — 1 sec)
is removed, and thus wcg[n] runs for n = 0,1,..., Ncg — 1,
where Ncpr = tB[NB — 1] — tB[O] + 1 samples.

IV. IN-MEAL INDICATORS

Given a CFI curve wcg[n], n =0,1,..., Ncg — 1 and the
corresponding bites (tp[i], wgl[i]), i = 0,1,...,Ng — 1, we
extract the following seven in-meal eating-behavior indicators.
Meal duration (in seconds) is obtained as

tB[NN—l]—tB[O]+1 (14)

Total meal intake (in g) is obtained as the sum of all bite
weights wp[i]. In addition, eating rate, which can be used to
modify eating patterns towards healthier behavior [8], can be
directly obtained as the ratio of total meal intake over meal
duration.

We also compute the mean and standard deviation of bite
weights wg[i] (both in g too), and the mean bite frequency
(in Hz) as
—1

(15)
i=0

= .
<NB1 Z tB[Z—l—l]—tB[Z])

Finally, by solving the following minimization problem
Ncr—1
min

nit (16)

. ) 7 2
(cm2 + Bi — wer [z])
i=0
we obtain the CFI acceleration « (in g/sec?) that is used to
characterize linear and decelerated eating patterns, and the

initial CFI rate /3 (in g/sec).

V. EVALUATION
A. Dataset

To evaluate our algorithm we use a dataset of 113 meals
collected during three trials in the context of the EU funded
project SPLENDID [26]. The trials took place in the Wagenin-
gen University, Netherlands, and in the Karolinska Institutet,
Sweden. The 113 meals used in this work belong to 77
participants. Their demographic data are shown in Table L.

TABLE I
DEMOGRAPHICS OF THE THREE RECORDING TRIALS: DATE OF
RECORDING TRIALS, NUMBER OF MALE AND FEMALE PARTICIPANTS
(M/F), MEAN AND STANDARD DEVIATION OF AGE (IN YEARS) AND BMI
(IN kg/m?), TOTAL NUMBER OF MEALS AND BITES.

Date M/F Age BMI Meals  Bites
Apr-Sep 2014 14/13 26.2 (5) 23.9 (2.1) 52 2,615
Mar-Apr 2015 18/21 16 (0) 21.4 (2.5) 39 1,487
Apr-May 2015 0/11 22.8 (1.6) 21.7 (2.1) 22 1,153

Total 32/45  20.6 (5.6) 22.3 (2.6) 113 5,255

Most participants had normal body-mass-index (BMI) during
the trials, and no problems were reported. In total, the 113
meals contain 5,255 bites. A subset of these meals (76) for
which “risk” ground truth is available have been used in [34].
Another subset of these meals have been used in [35].

Eating during the trials was completely unrestricted. Partic-
ipants were free to consume as much food as they wanted,
and refill from a buffet. In particular, the second trial with
the 39 young participants of 16 years old took place in
the Internationella Engelska Gymnasiet Sodermalm school,
during the regular eating break at the school cafeteria. The
types of consumed food include vegetables with chicken,
tomato and mean soup, minced meat, fish and potatoes,
beefburger/chickenburger with potatoes and salad. There was
no limitations on utensils.

For each meal, the ground truth CFI curves for all the
meals were calculated independently by the eating behaviour
analysis scientists at KI. A validated methodological approach
[36] was used, manually combining and correcting raw Man-
dometer data based on meal-event occurrences annotated on
video recordings of the meals. In the past similar manual
data analysis approaches have been used in a wide range of
experimental settings and target populations [37], [38].

B. Evaluation methodology

We evaluate our algorithm by comparing the values of
various in-meal indicators extracted from ground truth CFI
curves and the algorithm’s CFI curves. We use this evaluation
approach since directly comparing the CFI curves (e.g. using
mean squared error) can be misleading. For example, if the
algorithm “misses” one bite, then all the remaining CFI is
offset by the weight of the missed bite. The earlier the missed
bite occurs, the greater it contributes to the mean squared error,
which is counter-intuitive. However, we indirectly compare the
curves on the basis of bite-weight sequences using the Earth’s
mover’s distance (EMD) [39].

To assess the effectiveness of our algorithm (or any of
the algorithms we compare against, see Section V-C) for an
indicator, we first compute the indicator value for each meal
i twice: I[i] based on the ground truth CFI curve (see Section
V-A), and I[i] based on the algorithm’s CFI curve. We then
compute the absolute error of the algorithm as the absolute
difference

eli] = | 1) - 1] (17
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Fig. 10. Visualization of the classes used in evaluation of a. Each class is
0.5 mg/sec? wide, corresponding to half the width of five eating patterns:
linear, decelerated (three levels), and accelerated.

We present the mean and standard deviation of absolute error
across all meals of the dataset in Table II, for each indicator
and algorithm pair.

We also evaluate indicators « and [ with a second
classification-based approach. Similar to [24], we define a set
of classes for each indicator. In particular, o values (based
on ground truth) are roughly within the range of —3.5 to
1 mg/sec?. We thus partition this range into classes of 0.5
mg/sec? width. Based on ground truth and algorithm values
for o we assign ground truth and predicted class labels, and
compute the accuracy based on the confusion matrix (see Table
IT). The same method is used for 3; [ values are roughly
within 0 to 2.5 g/sec, and we thus partition using classes of
0.25 g/sec width. Figure 10 shows the 10 classes we use and
their correspondence in eating patterns.

We also evaluate accurate detection of bite instances. For
a given meal, let (tg[i],wp[i]), i = 0,1,...,Np — 1 be the
ground truth bite pairs (time-stamp and weight), and similarly
let (tzi],wgli]), @ = 0,1,..., Nz — 1 be the algorithm’s
detected pairs. We perform an one-to-one matching between
the ground truth and detected bites so that each ground truth
bite can be matched with at most one detected bite, and vice
versa. The ¢-th ground truth bite is matched with the j-th
detected bite if

(18)
19)

‘th - tB[j” <t
\wa[i] — walj]] < wr

i.e. if both the predicted time-stamp and weight absolute
errors are less than two thresholds. We select wy, = 3 g
to allow some small tolerance for weight detection. We also
select ty, = 10 sec; this value might seem a bit high at
first, however, there is an inherent delay between the moment
the food is picked from the plate (and a correct detection is
expected to occur) and the moment the bite is actually placed
in mouth (and the clinical experts annotate as occurrence of a
ground truth bite). Also note that the time mismatch for bite
detection is also taken into account in EMD (Table III). Each
matched pair contributes as one true positive (TP) detection.
Each non-matched ground truth bite contributes as one false
negative (FN) detection, and each non-matched detected bite
contributes as one false positive (FP) detection. We then
compute the total TP, FP, and FN across the dataset (by
summation), and present precision and recall for bite detection
in Table III.

Finally, we compare the sequence the time-weight se-
quences of bites using the EMD. Based on the notation of
[39], signatures P and () correspond to the sets of ground
truth and detected bite sequences respectively

P:{(tB[L]awB[Z])vzzoalvaNBfl} (20)

Q ={(tglil,wpli]),i=0,1,...,Ngy — 1} (21)
where the cluster representatives are the time-stamps of bites,
and the bite weights are the cluster’s weights. We then solve
the minimization problem defined in [39] and compute the
actual EMD. It is important to note that the total mass of each
signature is not equal; the difference corresponds to the total
meal weight error. Since the EMD does not take into account
extra mass (i.e. incurs no penalty if the algorithm has detected
more or less total mass), results should always be considered
together with total meal weight errors.

In order to apply the algorithm, values for the following
parameters are required: Ay, (Section III-A), A (Equation 10),
a and c (Equation 11), and o (Equation 12). Thus, we apply
the algorithm in LOSO fashion, where for each participant, the
meals of all other participants are used to estimate the values of
these parameters (as described in Section III-C). The algorithm
is then applied on the meals of the left-out participant with the
estimated values. This process is repeated for every participant.

C. Results & discussion

We evaluate our algorithm and compare its effectiveness
with the following three algorithms: greedy quadratic fitting
(GQF) from [24] (since it demonstrates the highest effective-
ness among the three algorithms proposed in [24]), the original
PCFG algorithm from [25], and our implementation of the
UEM algorithm of Mattfeld et al. [27]. Since GQF and PCFG
algorithms do not directly detect bites (even though PCFG
adopts a bite event), we detect bites for these two algorithms
by simply detecting weight increases in the CFI curve; despite
this being a naive approach, it works very well for GQF (see
Table III). For the algorithm in [27] we have implemented the
“single bite” and “food mass bite” stages, and have omitted
the “drink bite” stage, since only the plate is placed on the
Mandometer. For the threshold values of parameters Wy, Wa,
and W3 (Equations (1-4) of [27]) we use the suggested values.
We also set 3op0ise = 1 g to account for the recorded jitter (see
Section III). Finally, for “single bite” we use only Equation
(1) and not Equation (2) of [27], since the requirement of
Equation (2) decreases the detected bites to almost zero.

Our proposed algorithm achieves minimum error rates for
five out of the seven indicators. In particular, the mean error
for total weight is less than 25 g, while the second-lowest
result (achieved by PCFG) is more than 100 g. Meal duration
error is 61 sec, more than 25 sec less than the second-lowest
error of 88.5 sec (for PCFG). Mean bite weight error is 1.4
g for our approach, while the second-lowest error is achieved
by Mattfeld e al. [27] and is 2.1 g. Note that t-test indicates
a significant difference between our algorithm and each of the
GQF, PCFG, and Mattfeld et al. algorithms (p < 0.05, for
most cases p is even lower, e.g. p < 0.01), except for the
following three cases: (a) STD bite weight, Mattfeld ef al. vs.
our approach, p = 0.27, (b) mean bite frequency, GQF vs.
our approach, p = 0.23, and (c) mean bite frequency, PCFG
vs. our approach, p = 0.9. This is highly encouraging since
these three cases are the only ones that our algorithm does not
achieve minimum error. Finally, standard deviation of error is
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TABLE II
MEAN AND STANDARD DEVIATION OF ABSOLUTE DEVIATIONS FROM GROUND TRUTH INDICATOR VALUES FOR EACH INDICATOR-ALGORITHM PAIR.
DIAMOND (°) INDICATES NO SIGNIFICANT DIFFERENCE (p > 0.05) OF THE CORRESPONDING ALGORITHM COMPARED TO OUR APPROACH. BOLD
INDICATES TOP EFFECTIVENESS (MINIMUM MEAN ERROR).

GQF [24] PCFG [25] Mattfeld et al. [27] Our approach
Duration (sec) 108.2 (164.6) 88.5 (138.8) 102.7 (164.7) 60.7 (108.6)
Weight (g) 225.5 (320.9) 103.2 (142) 118.6 (83) 24.3 (47.1)
Mean bite weight (g) 7.67 (10.78) 3.04 (3.82) 2.1 (1.93) 1.4 (1.91)
STD bite weight (g) 31.59 (45.84) 8.46 (9.58) 1.67° (1.52) 2.08 (3.8)
Mean bite frequency (mHz)  13.3° (17.8) 14.9° (14.7) 23.3 (19.1) 15.1 (15.7)
o (mg/sec?) 0.375 (0.587)  0.464 (0.577) 0.435 (0.607) 0.244 (0.416)
B (g/sec) 0.21 (0.364) 0.255 (0.323) 0.422 (0.307) 0.114 (0.154)

TABLE III
CLASSIFICATION ACCURACY FOR ax AND 3 COEFFICIENTS, PRECISION AND RECALL FOR BITE DETECTION, AND EARTH MOVER’S DISTANCE. BOLD
INDICATES TOP EFFECTIVENESS (MAXIMUM ACCURACY, PRECISION, AND RECALL, AND MINIMUM EMD).

GQF [24] PCFG [25] Mattfeld et al. [27] Our approach
« accuracy 0.602 0.434 0.442 0.69
B accuracy 0.619 0.451 0.204 0.743
Bites precision 0.84 0.635 0.428 0.793
Bites recall 0.815 0.611 0.343 0.744
EMD (sec) 14.92 22.39 32.23 6.45

the lowest for our algorithm for most indicators, indicating the
increased robustness of our approach.

Regarding indicators « and f3, our algorithm achieves the
minimum error among the other three (Table II) as well as
the highest classification accuracy (Table III); accuracy for
our approach is 0.69 and 0.743 for « and [ respectively;
these values are 0.088 and 0.124 higher than the second most
effective results of GQF.

Finally, for bite detection, our proposed algorithm achieves
the second highest precision and recall, outperformed only by
GQF. However, the achieved precision of 0.79 and recall of
0.74 are encouraging, while the effectiveness gain of GQF is
not comparable to the significant gain of our algorithm for
most indicators, such as meal duration, total meal intake, o,
and f. This effectiveness (in bite detection) of our approach
(as well as of GQF) is high enough to enable practical
application in real-life. Indeed, Mattfeld et al. [27] report
that their algorithm is able to measure just 39% percent of
bites, however this is sufficient to accurately estimate average
bite weight. In addition, we have observed that our algorithm
sometimes detects one large bite that corresponds to two
smaller ground truth bites; this leads to one FP and two FN
bites in the confusion matrix (based on our strict evaluation
methodology for bite detection, Section V-B). However, even
though this decreases bite detection effectiveness, it does not
affect the accurate estimation of other indicators (such as
weight of meal) since the measured weight of consumed food
is the same.

VI. CONCLUSIONS

In this work we propose an algorithm that automatically
extracts the CFI curve and in-meal eating-behavior indicators
from the Mandometer, eliminating the need for laborious
manual work from clinical experts, and thus enabling its
application on the large scale. The algorithm is based on a

CFG; non-terminal symbols model the different event types
that can occur during a meal, while terminal symbols are
assigned to different parts of the recording based on delta
coefficients. Meals are mapped to strings of terminal symbols
which are then interpreted by means of (possibly multiple)
parse trees. We select the most likely interpretation based on
the likelihood of each event. The CFI curve is then constructed
and we extract indicators such as meal duration and total meal
intake, as well as the o and (8 coefficients of the quadratic
intake model.

We evaluate our algorithm on a dataset of 113 meals
and compare its effectiveness against three other algorithms,
and find that it achieves significantly better results for most
indicators. We also evaluate on bite-instance detection, where
our algorithm achieves the second-best precision and recall
rates.
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