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ABSTRACT 
The extraction of structure-from-motion emerges in 

several research fields such us computer vision, video 
coding, biomedical engineering and human-computer 
interaction. Present work focuses on the algorithmic 
approach of structure-from-motion extraction under 
orthography providing, at the same time, guidelines in 
matters of implementation. Relative principles, 
constraints and stability are discussed. The employed 
algorithm was first presented in [2]. The improvement 
of the algorithm’s performance w.r.t. the proposed user- 
choices is illustrated by means of experimental results. 

1. INTRODUCTION 
The estimation of 3 0  motion and structure of 

objects from monocular or stereo image sequences has 
been for years a problem for computer vision 
researchers [4]. This task is recently given considerable 
attention, especially after the guidelines of the Moving 
Picture Experts Group regarding MPEG-4 and MPEG- 
7 standards. 

Regarding the employed projection model, the two 
cases mainly considered in literature are the perspective 
and the orthographic ones, whereas approximations on 
these models have also been treated. Exact mathe- 
matical solutions have been proposed for both methods 
including for example [6] for the perspective and [3,7] 
for the orthographic case. Considerable attention has 
been given lately to the improvement of the solution’s 
stability in the presence of noisy input estimates 
(optical flow, feature correspondences). Such work can 
be found for example in [8] for the perspective and 
[ 1,231 for the orthographic case. 

Although, in general, the obtained results are far 
from the desired, it can be seen that, for most 
algorithms, certain choices of the user improve 
dramatically the quality of the estimates. Present work 
focuses on making these points clear, providing 
guidelines for the interested user in order to improve 
structure and motion computation procedures. At the 
same time, the theoretical interpretation for the 
proposed user choices is discussed. The introduced 
guidelines are directly applicable to the reconstruction 
algorithm of [2], while they can be extended to other 
algorithms including the previously referenced ones. 

2. BACKGROUND 

2.1 Theoretical Analysis 

p’(x’,y’,z?, can be represented by, 

where R, T are the rotation matrix and translation 
vector respectively. Assume we are given three frames 
of a video sequence containing a rigid object. Let 
r: , rb , r,’ be the 2 0  reference vectors for each point 

p (i.e. the position of the point on the image plane) in 
frames 0,1,2 respectively. Let also v:j’ , v : j2  be the 
corresponding motion vectors using frame 0 as refere- 
nce (e.g. vi+’ = rk - r j ) .  On the basis of three point 

correspondences (p=l,2,3) for the transition between 
frames 0 and 1, the 2x2 motion matrices K and i are 
defined through [2]: 

The movement of a point p(x,y,z) on the object to 

p’ = R p +  T ,  (1) 

Arl = Ko41Aro, AV@-’’ = gO+lAro,  (2) 
where Avo+’ = [v,+’ ~ vp-)’ 

Aro =[rp -r: r,” --I;:] and Ai-’ =[.I -d ri 3’1. 
Appropriate transition indices have been added 

to K,  k . It turns out that use of L = adj(K) = adj( k + I) 
may simplify the subsequent mathematical notation. 
Matrix L (or K, ) characterizes the structure and 
motion of a plane (defined by a triplet of points) in the 
3 0  space. Considering the i-th triplet of points, along 
with their correspondences between frames I and J ,  
L{3Jdenotes the corresponding L matrix. In this 
sense, given four point correspondences over three 
frames, the unique solution is provided by the 
algorithm using as input four L-matrices - namely 
Lo+’ 1 > L 2  9L1 o+2and L:j2. The estimation of motion 
and structure in this case involves estimation of 
matrices Rh’, TO-” , RW2, To+’ and depth zp for each 

employed point rp (r: for example in frame 0). 

For two triplets of points i , j  the following 2x2 matrix 
is defined 

vi-)’ -vP+’], while 

&I-+J= k Li I+J-  L j  I + J .  (3) 
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For each transition, the 2x2 matrix Y'*.' is computed 
as 

I M  
YI+~ = - ( A L ~ + ~ ) ~ A L ~ + ~  , (4) 

k=l 

with eigenvalues Ai;' <Ai:,/ corresponding to the 

unit-norm eigenvectors c ' + ~ ,  Jc'+~, for J = [e  U']. 
The quantities defined up to this point are those 

expressions of the available motion vectors that are 
sufficient for the computation of both R and T. In fact, 
writing R =  R2x2 as a composite matrix, where 

= [ ;: rl = [ r13 t-23 IT and 1-2 = [ r31 t-32 IT, 

one may observe that the entire rotation matrix is 
determined solely by rl,  r2 and r j j .  

As a first step of the algorithm, r:+J,r{+K and 

ri+J,r2/+K are computed, where as usual the 
superscripts denote the successive transitions between 
frames. It has been proved that r { j J  is equal to the 

eigenvector within a scalar ambiguity, i.e. 

r:jJ = p l - l J c l j J .  For any two transitions in the 

form of I -+ J and I -+ K ,  it has been also proved 
that the ambiguity ratio w can be computed as 

[ l-2' :J 

As a next step, the least-squares estimates of 
are proved to be given by I+K unknowns r;?' and r,, 

[;:I] = (@I+J,I-rK >-' Y! I+J,I+K (6) 

where the 2x2 matrix O1+J,l-lK and the 2x1 vector 
contain summations of L matrix products, 

and expressions of , c ' + ~ ,  w ~ ~ ~ , ~ ~ ~  and the 
minimum eigenvalues of Y' jJ  and Y'+K.  

The rest elements of the rotation matrices can be 
straightforwardly computed. Rotation is estimated 
irrespective of translation or depth. Although the 
absolute depth cannot be determined, relative depth 
may be estimated by fixing an arbitrary point of the 
rigid object onto the image plane. 

y J+J,I+K 

2.2 The Algorithm in Steps 
Based on the theoretical analysis of [2] described in 

short in the previous subsection, the algorithm can now 
be decomposed in few simple steps. Initially, 
A-1 Compute the motion field for each transition 

using a motion-estimation scheme. 
A-2 Based on some confidence measures of the 

motion estimates, decide on the subset of motion 
estimates to be employed in the computations or 

employ all motion estimates with appropriate 
weights. 

For each transition, 
B-1 Divide the available points (point correspo- 

ndences) in triplets and compute the L-matrices 
using eq. (2). 

B-2 Group triplets in triplet-pairs and compute AL- 
matrices from eq. (3). 

B-3 Compute Y and then A,,,, Amax, c l .  
For certain pairs of transitions, 
C-1 Compute w from eq. (5) 
C-2 Compute rotation matrices' elements ~3~ using eq. 

(6), and then rotation matrices. 
C-3 Compute translations and depth for all employed 

points using eq. (1). 
Step A-2 is skipped once noise-free (exact) point 

correspondences are available. At this point, a number 
of questions arise, as far as user-choices are concerned, 
on the steps A-2, B-1 and B-2 of the algorithm. 
Namely: (i) how can one measure efficiently the 
relative confidence of the motion estimates, (ii) how 
many point correspondences should be employed, (iii) 
what is the most robust-to-noise method for the 
division of available points into triplets, (iv) what are 
the best pairs of L-matrices in order to derive ALs. 

3. USER CHOICES 
The investigation of the questions posed in Section 

2.2 is carried out in the subsequent subsections 

3.1 Using More Point Correspondences 
Since generally motion vector estimates contain 

errors (modeled as additive noise), one should use as 
many point correspondences as possible. In particular, 
it can be proved that Y1jJ defined by eq. (4) is a 
strongly consistent estimator of its noise-free 
counterpart and it can be used in place of the 
corresponding noise-free quantity in the steps B-3 and 
C-1 of the algorithm. Strong convergence of the 
obtained estimates is achieved a s M  -+ m , i.e., as the 
number of the employed triplet pairs increases provided 
that the following rules are obeyed in the choice of the 
employed points, point-triplets and point-triplet pairs: 
(Rl) for each frame, each point triplet (i) is formed on 
the basis of distinct reference points Cp) and (R2) for 
each frame, each point-triplet pair (k) is formed on the 
basis of distinct triplets (i). Similar convergence results 
and rules hold true for the matrices O'j.','-tK and 

, which are used in step C-2 of the 
algorithm. 

Consequently, for a given set of p= l  ... P points and 
associated motion vectors, the user should (i) employ 
the highest possible number P of available point 
correspondences, (ii) partition the available P points 
into N = 1P/31 distinct point triplets, (iii) form 
A4 = LiV/31 distinct triplet pairs. As P -+ 00 both M, N 
tend also to 03 . 

y l + J , I + K  
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3.2 Weighted Estimators 
Since, in general, most of the motion vector 

estimates do not coincide with the true ones, we should 
define a number of criteria to decide on the relative 
confidence of the motion estimates. Then, a weighted 
least-squares solution should be employed by involving 
in the formulas of the previous section appropriate 
weights w.r.t. the confidence of each estimate. As an 
example, matrix Y defined in (4), is substituted by 

l M  
Y I j J  = - cBk(ALi+J)TALi+J,  where 6, denote 

k=l 
appropriate weights imposed to triplet-pair k. Weight 0, 
relies on the confidence of the triplets i a n d j  forming 
the triplet-pair k, which in turn are expressions of 
confidence values associated to the involved motion 
vectors. 

In order to assign a confidence value wp to a 
particular motion vector vp we take into account (a) the 
local intensity smoothness, (b) the local motion vectors 
variance and (c) the homogeneity of a motion vector in 
its neighborhood, i.e., confidence for vp is computed as 
the linear combination, 

where w i  = (sum of the first derivatives in a block 
centered at p> , wpv = (the inverse of the motion vectors 
variance in a block centered at p } ,  wpD = (the inverse 
of the bias of v,, w.r.t. the mean motion vector 
computed in a block centered at p ]  . 

w , = a w ; + p w p V + y w ; ,  (7) 

3.3 Choosing Point Triplets 
Apart from the desired accuracy of the motion 

vectors we employ, as input in the algorithm, there are 
some other motion vector properties that we may 
exploit in order to improve the algorithm's 
performance. As a matter of fact, these properties 
concern more the 'grouping' of motion vectors rather 
than the motion vectors themselves. For example, 
intuitively, we would prefer a triplet of points defining 
a plane undergoing a large displacement in orientation. 
Moreover triplets of points relatively far from each 
other tend to be more insensitive to noise, as it will be 
seen in the sequel. 

In [2], it was proved that if 5 represents the unit 
vector perpendicular to a triangle defined by a point 
triplet in 3 0  space and RZx3 is the 2x3 matrix that 
contains the first 2 rows of the 3x3 rotation matrix of 
the triangle w.r.t. any arbitrary axis, then for this 
triangle, motion matrix K can be expressed as: 

K = Rzx3 0 1 (8) [I :I 
where the scalars p = -<x/&, q = --<,,/<: contain the 
orientation information of the triangle. 

From eq. (8) we conclude that = K2 -K,, and 
equivalently matrix AL\4J in equation (3), tends to be 
more 'informative' when matrices LiAJ,  L;jJ 

correspond to triplets defining triangles with large 
difference in orientation. The latter is encapsulated in 
scalar factors Ap = p2 - p l  and Aq = q2 -ql. Thus, one 
should try to maximize factors Ap, Aq by choosing 
triplet-pairs that seem to define pairs of triangles in 30 
space with their surface normals as close to 
perpendicular as possible. 

Having decided on the choice of triplet-pairs, one 
faces the problem of how to choose the point triplets 
themselves (algorithm's step E-1). In equation (S), 
matrix K (equivalently L) appears to be more 
'informative' for a given rotation when scalars p ,  q are 
larger in absolute value. From their definition, p = q = 
0 when the triangle is parallel to the image plane, 
whereas p ,  q = m ,  when it is perpendicular to it. The 
latter extreme case cannot happen, since then the 
triangle projects onto a straight line and thus cannot be 
observed. However, the valuable information which 
intuitively rises, is the fact that we should look for 
projections of triplets of points forming triangles as 
close as possible to the perpendicular to the image 
plane 3 0  triangle. One easily-observed case where the 
latter is likely to happen is around abrupt edges. 

In addition, as mentioned in Section 3.1, it is 
essential that L{4J matrices are formed on the basis 
of distinct triplets of points. In this case, the effect of 
noise in motion vectors for each triplet is proved to be 
encapsulated in a scalar parameter, 

, -  

Equation (9) indicates that for given SNR levels the 
influence of noise is proportional to the ratio on the 
RHS. Any triplet of non-collinear 2 0  reference vectors 
r l ,  r2, r3, defines a rectangle (or triangle) whose sides 
are given as vectors by r2-  r l ,  r3-  r l .  Scalar det([r3-rl 
rz-rl]) is then proved to yield the area of the respective 
rectangle. It can be easily proved that for any kind of 
triangle, this factor tends to be smaller as its side 
lengths go larger. In this way, by choosing 'large' 
triangles, i.e. by keeping the employed differential 
reference vectors reasonably large, the noisy terms are 
minimized. 

4. SIMULATIONS 
The proposed guidelines were tested on three 

different types of objects: (i) the computer generated 
scene of two 30 planar surfaces (ii) the 30 model of a 
teapot and (iii) three frames of a natural sequence 
containing a coffee can. The 3 scenes for the teapot and 
the planar surfaces were produced using @a-+' =9", 
q$o'2=15" and 4O+'=2O0 ,q$"-'2=400 respectively. 

In the examples of the planar surfaces and the 
teapot model, the motion fields were artificially 
disturbed by uniformly distributed random noise, in 
order to illustrate how the proposed guidelines improve 
the algorithm's performance in the presence of noise. In 
this sense, Table 1 depicts the improvement in the 
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estimation of rotation parameters for the planar 
surfaces for increasing number of employed point 
correspondences (SNR=-Sdb in differential motion 
fields) on the basis of 50 Monte Carlo runs. Table 2 
depicts the improvement in the estimation of rotation 
parameters for the planar surfaces for increasing 
differential reference vectors in the formulation of 
point triplets (SNR=-Sdb in differential motion fields). 
All triplets were chosen on orthogonal triangles of 
equal side lengths x. Each time side length x was 
increased, 50 Monte Carlo tests were performed, 
employing 4500 point correspondences. The teapot 
model was next used to illustrate that following the 
guidelines of Section 3 ,  we obtain accurate results even 
in the case of extremely low SNR levels (Figure 1). For 
each SNR level 50 Monte Carlo experiments were run 
(see Table 3 ) .  Using all the aforementioned guidelines, 
the algorithm’s performance was tested for the natural 
sequence as well. In this case, the algorithm’s 
performance was particularly enhanced by the use of 
appropriate weights, as analyzed in Section 3.2. The 
estimated motion vector confidence using the three 
proposed criteria and the reconstructed 3 0  model are 
depicted in Figure 2. The reconstruction scheme is 
considered to have been particularly successful taking 
into account the quality of the motion estimates 
provided by the motion estimation scheme. 

Regarding the execution times, it has to be 
mentioned that the proposed approach is of 
considerably low computational cost. The most time- 
consuming task of the system is the motion estimation 
scheme, in comparison to which the execution time of 
the reconstruction algorithm is negligible. 

6 
26 
46 

Table 1: Improvement of the estimated rotation parameters 
for planar surfaces for increasing number of correspondences. 

58.99 59.85 76.33 
19.49 4.10 39.08 4.09 
19.91 1.60 39.80 1.57 

I I 

66 11 19.59 I 1.25 11 39.77 I 1.35 
71 11 19.90 I 0.96 11 39.85 1 1.05 

Table 2: Improvement of the estimated rotation parameters 
for planar surfaces for increasing triangle area. 

n * 0-12 

Table 3: Estimated rotation parameters for the teapot model 
for increasing SNR. 

Fig. 1: Noise-free and noise-contaminated differential motion 
fields for the teapot model. 

.... . . 

Fig. 2: Motion vector confidence criteria and . 3D 
reconstruction for a natural sequence. 

5. CONCLUSIONS 
The adopted 3 0  reconstruction algorithm [2 J was 
examined from an ’experiment design’ point of view. 
All user choices were systematically elaborated 
targeting to optimal handling of the available point 
correspondence information. The introduced guidelines 
were validated by means of simulated experiments. The 
methodology introduced by this work can possibly be 
extended to other 3D motion extraction algorithms 
handling orthographic or even perspective projection. 
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