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Abstract 

Over the past few years, virtual studios applications have 

significantly attracted the attention of the entertainment in­

dustry. Optical tracking systems for virtual sets produc­

tion have become particularly popular tending to substitute 

electro-mechanical ones. In this work, an existing optical 

tracking system [IJ is revisited, in order to tackle with inher­
ent degenerate cases; namely, reduction of the perspective 
projection model to the orthographic one and blurring of 

the blue screen. In this context, we propose a simple al­

gorithm for 3D motion estimation under orthography using 

3D-to-2D line correspondences. In addition, the watershed 

algorithm is employed for successful feature extraction in 

the presence of defocus or motion blur. 

1. Introduction 

The estimation of camera egomotion is a task of major 
interest in the fields of computer vision, pattern recogni­
tion and video understanding. Virtual studios applications 
have a lot to benefit from advances in these fields, regarding 
the topics of chromakeying, compositing and, in particu­
lar, 3D camera tracking (see [8] and references therein). 
Camera tracking systems employed in virtual studios are 
generally classified into two broad categories, namely the 
electro-mechanical and the optical ones. Several virtual stu­
dio systems have been developed, including Elset, 3DK, 
Synthevision for electro-mechanical and Cyberset, Mind­
set, the Mona Lisa Project for optical tracking among oth­
ers. Electro-mechanical tracking is widely adopted since 
it is considered highly accurate, however it requires time­
consuming pre-calibration procedures, sensors suffer from 
random vibrations, and the designated equipment can be 
very expensive. Optical tracking systems rely on pattern 
recognition schemes to extract camera motion on the basis 
of the frames captured. In turn, optical tracking fails when 
the referenced features are out of focus, occluded or even out 
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of view. Moreover, markers cause compositing problems, in 
order to be made distinguishable from the blue background 
[8]. 

In [1], a method for the construction of a two-toned blue 
screen was introduced while an accompanying algorithm 
for 3D camera motion estimation from 3D-to-2D line cor­
respondences was proposed in [12]. The features tracked in 
the particular system rely on the implicit line grid formed 
on the blue screen by its construction process. For the 3D 

camera motion estimation problem, several algorithms have 
been proposed in the literature. Using lines as input features 
and establishing correspondence has been also considered 
by [6, 3, 11] among others. For the same purpose, point 
correspondences are also considered for perspective and Of­
thographic projection; see for example [10] and [9, 13]. In 
general, lines are preferable to points since they can be more 
accurately detected [1], however relatively many views and 
correspondences are required to solve for 3D motion. The 
utilization of 3D-to-2D line correspondences in [12] along 
with their placement on a rectangular grid reduced the re­
quired correspondences and views to four and two (one of 
which 2D) respectively; in the same context in (I], four point 
correspondences were used using a variant of l7], however 
lines were superior in terms of accuracy. In this way, the 
system overpasses nearly all problems of optical tracking. 
In addition, as an optical system itself does not suffer from 
time-costly pre-calibration and canlera vibrations. However 
its performance is limited in degenerate cases; namely, in 
the presence of motion and defocus blur on the background 
(blue screen) or when the perspective projection model re­
duces to orthographic. The latter is the case when the camera 
is located far from the object. 

In this work, both degenerate cases are addressed. A 
simple algorithm for 3D camera motion estimation on the 
basis of 2D-to-3D line correspondences under orthography 
is proposed, as an alternative to the algorithm given in [12] 

for the perspective case. At the same time, the watershed 
technique is applied in order to efficiently extract line fea­
tures, even in the presence of significant defocus or motion 



blur, where traditional edge detection techniques perfonn 
pooreJy, and 3D camera motion parameters were estimated 

with particular accuracy. 

2. Background and Notation 

In L 1], the screen is divided in rectangles, each one painted 
using one of two close levels of blue. Then the blue screen 
can be defined by a respective binary map B along with 
its real-world dimensions. In each captured frame, a small 
portion of the wall is within the camera field of view corre­

sponding to a submatrix S of B. Algebraic coding tech­
niques (maximal length sequences) are employed in the 
construction of the binary map to ensure that any possi­
ble S exceeding a minimal size can be uniquely localized in 
B. The camera field of view is detennined with a strategy 
that uses no apparent feature correspondences for camera 
motion estimation, poses no problems to the system's chro­

makeying and compositing modules and estimates camera 
location rather than motion on the basis of the frame cur­
rently captured. 

At the same time, a simple algorithm for the 3D cam­
era motion estimation has been proposed for the particular 
scenario. The implicit rectangular grid fanned by the rec­

tangles' boundaries is modeled by two sets of 3D lines: a 
set of 'vertical' Xv = {X = Xi, i = 1··· N} and a set of 
'horizontal' lines Yh = {Y = yj,j = 1 . . · M}. The 3D 
lines along with the screen depth Zo in the reference scene 
contain all geometric infonnation required. The perspective 
pinhole camera model yields x = It and y = I�, where 
(x, y) denote the cartesian coordinates of a point (X, Y, Z) 
projected onto the image plane. 3D camera motion is then 
obtained on the basis of the (virtual) reference scene and 
the current frame along the lines of [12]. In the latter, it is 
proved that 3D rotation, 3D translation and scale are effi­
ciently determined even in the presence of noise. In short, 
from the currently captured frame, after chromakeying, 2D 
lines are extracted using Sobel fil tering and the Hough trans­
fonn. The cartesian line representation is employed for the 
extracted lines, y' 

= a x' + b , where (x', y') denote carte­
sian point coordinates in the current frame. The two sets of 

3D lines project onto two corresponding sets of 2D lines in 
the current frame, Lv and Lh respectively. In this sense, let 
(av;,bvi) and (ahj,bhj) be the line parameters of the i-th and 

j-th element of sets Lv and Lh respectively. 

In order to accurately determine scale, the smallest pos­
sible rectangle is extracted (one such rectangle is assured 

to be contained in every frame by the blue screen construc­
tion method). Exact line correspondences are not required 
for the rotation estimation, whereas in order to detennine 
translation, correspondence is established on the basis of 
the binary map. 
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3. Solving for 3D motion under orthography 

In the orthographic case, projection model equations 
change to X = X, Y = Y. In this case, it is clear that 
any 3D motion estimation algorithm for perspective pro­
jection is inapplicable, since the projection model becomes 

degenerate. However, as it will be shown, one can utilize 
the following algorithm as an alternative. By combining the 
line equation with the projection model eqs., 

(1) 

A horizontal line can be given in vector fonn in 3 D space, 
as [X Y ZJT 

= [X Yj zof, while its movement equation as 

(2) 

where R2X3 = [rmnl�[rl r2 r3] contains the first two rows 
of the rotation matrix R, rk is its k-th column and t is the 
2D translation vector. The equation yielding the Z' coor­
dinate has been ommitted, since it provides no additional 
information under orthography. In the same sense, the third 
component of t cannot be obtained. 

In both sets of 2D lines for perfectly accurate measure­
ments, line parameter a remains constant due to the nature 

of the projection model. In this sense, aVi�aV and ahj�ah 
for every i and j. Then, by combining equations ( l ) and (2), 

and since (2) holds for every X on the 3D line, 

-1] rl = 0, and 

-1] (Yjr2 + ZOrg + t) (3) 

Similarly, for a vertical line, 

[ au -1] r2 = 0, and 

[av -1] (Xirl+z0r3+t) = -bvi. (4) 

After algebraic computations using eqs. (3) and (4), 

while for a pair of horizontal (Yl, Y2) and a pair of vertical 
(Xl, X2) lines, 

(Y2 - Yl) (ah - av) Tl2 = -(bh2 - bhl) , 
(X2 - Xl) (av - ah) Tn = -(bv2 - bvd . (6) 

In this sense, the rotation matrix R is estimated from eqs. 
(5) and (6), and the orthogonality equations, and since the 
depth of the screen Zo is known, the 2D translation vector t 
is detennined by eqs. (3) and (4). 



It is interesting to notice. that by having detennined a 
grid rectangle in the particular frame (for example distance 
X2 - Xl and Y2 - yd, 'absence' ofline features due to large 
contours of the same blue shade is detected by 

bh3 - bhl Ya - YI = (Y2 - Yl) 
b b ' h2 - hI 

( 
bV3 - bVl 

X3 - Xl = X2 - Xl) 
b b '  v2 - vI 

(7) 

(8) 

for a third vertical (X3) or horizontal (Y3) line detected. In 

fact, as it can be seen from eq. (6), exact line correspon­

dences are not required for the estimation of R; it suffices 
that for any two (av,bvl) and (av,bv3) corresponding to ver­
tical lines Xl and xs, Xs - Xl is known, which in fact is 
ensured by eq. (7). On the contrary, establishment of line 
correspondences is required for the estimation of t, which 

is made possible by the strategy adopted in the construction 
of the blue screen [1 J. 

Since av; == av and ahj == ah under orthography, one can 
securely detennine when to utilize the proposed approach 
instead of the one given in [12]. Before employing any of 

the two alternatives, Cv = �;:l av; and Ch = ��l ahj 
are computed. Thresholding the variance of aviS and ahjS 
around Cv and Ch respectively, one can detennine whether 
the perspective projection model reduces to the 0I1hographic 
one or not . It must be finally pointed out that equations (6) 

are linear equations of one unknown and it is trivial that 
they are solved in the Least Squares sense for all 2D lines 
extracted in the current frame. 

4. Extracting line features from blurred images 

The efficiency of the proposed system relies, in a signif­
icant degree, upon the acurracy with which line features are 
extracted from the captured frame. It is expected that in a 
real-world system the line extraction algorithm should have 

a robust performance under any circumstances. Since this 
process is actually an edge detection algorithm followed 
by the Hough transfonn [IJ, it can be seen that incorrect 
measurements will affect direct! y the output of the fonner. 

The standard edge detection approach fails to reliably lo­

calize edges in the captured video sequence, where blur from 
defocus and motion or even penumbral blur and shading can 
be a usual case. In this way, the blue screen lines project onto 

the image plane (frame) as a gradual luminance transition. 
It is widely approved that a blurred image is mathematically 

modeled by the convolution of a non-blurred image with a 
Gaussian blurring kernel [2, 5]. In general, a wide variety 
of techniques for edge detection from blurred images have 

been presented in the literature, a thorough review of which 
is beyond the scope of this work. 

In order to successfully extract line features even in the 
presence of blur, present work employs the idea of the water-
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shed for the edge detection task. The watershed technique, 

as described in [4] is a morphological filter, commonly used 
for segmentation purposes. In mathematical morphology, 
an image is modeled as a topological surface considering its 
intensity as the altitude . In this way, it is rather straightfor­
ward to estimate the variation from the gradient of the image. 
The watershed technique characterizes regions around local 
minima of the gradient as catchment basins, in the sense that 

if the image is gradually immersed into water, it is impossi­
ble for the water to reach another region of the image. When 
the water progressively floods the basins it will reach an al­
titude where two basins correspond. In this local maxima, 
a dam is raised to prevent the merging of different basins. 

Once the water reaches the global maxima, the set of dams 

raised constitutes the watershed of the image. Actually, in 
two dimensions, dams are raised along the curves that cross 
the boundary points between two basins. In this context, it 
can be seen that the watershed algorithm is most appropriate 
in our case, since image blur is by no means unifonn, mainly 
due to the variation of background depth. 

The result of the watershed technique is commonly an 
oversegmented image containing the correct set of contours. 

In the discussed system though, oversegmentation poses no 
considerable constraint, since the image contains no small 
segments, consisting of mainly two intensity values. An 
additional advantage is that the resulting edges are continu­
ous, as the algorithm is designed for segmentation, and has 
single-pixel width even in the case where a plateau connects 
two basins. Experimental results have shown that even in 
frames with significant blur the extracted lines are almost 
identical to those extracted from the original image. 

5. Simulation 

A blue screen plane was constructed, along the lines of 
[1], in a virtual environment using an appropriate commer­
cial software package. A virtual camera was then utilized 
to render blue screen's portions, for known camera motion 
parameters. The algorithm's performance under orthogra­

phy was tested over a number of simulated experiments, 

yielding remarkably accurate camera motion estimates. In­
dicative results for the estimated rotation angle (dash-dotted 
line) versus its true values (solid line) are depicted in Fig­
ure 1 for a rendered sequence of 10 frames, where camera 
motion parameters were arbitrarily varied along time. 

Rotation axis and angle were chosen indicatively for 
frame 7 u = [0.530.800.27]T and a = 30°. whereas transla­

tion T = [-14050 300JT. After the 2D lines were extracted 
from the captured frame, they were fed to the algorithm 

of Section 3 yielding ii = [0.52 0.77 0.26Y, & = 29.8°, 
, 

T t = [-140.149.8] . 
In Figure 2, significant non-unifonn blur has been added 

to the captured frame. Nevertheless, the implementation of 



the watershed algorithm successfully extracted the correct 

edges (Figure 3). The estimated camera motion parameters 
did not again significantly vary from the true ones. 

6. Conclusions 

In this work, an existing optical tracking system [1, 12] 
for virtual sets production is revisited. In order to tackle 

common degenerate cases in real-world shooting, the par­
ticular system is extended to include a simple algorithm for 
3D motion estimation under orthography and a watershed 
algorithm implementation for successful feature extraction 
in the presence of defocus or motion blur. The existing sys­

tem along with the proposed extensions can be a powerful 

tool for commercial production of virtual sets. 
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Figure 1. Real and estimated rotation angle 
values 

Figure 2. A blurred captured frame 

Figure 3. The watershed algorithm result 


