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ABSTRACT

In the present work, the algorithm proposed in [8,10] is
tested against existing approaches on 3D motion and
structure estimation of rigid objects under orthography.
The theoretical relation between the proposed approach
and the well-known factorization and epipolar methods
is discussed. At the same time, comparative simulated
experiments are given, illustrating the performance of
the three algorithms (the factorization, the epipolar and
the proposed one).

The proposed algorithm seems to be more generic
than the existing approaches, and provides superior
estimates of 3D motion in most cases.

1. INTRODUCTION

Much work has been done recently for determining
three dimensional motion and structure of moving rigid
objects viewed at different time points and/or by multi-
ple cameras. The extraction of motion and shape pa-
rameters of a moving rigid 3D object from a 2D image
sequence (often named as the Structure From Motion
problem) has been tackled by several authors. Various
approaches have been proposed, which differ in the
projection model assumed, the feature correspondences
and the input measurements employed, and the adopted
data-processing technique [7].

As far as the 2D features are concerned, line, curve
and point correspondences have been utilized, with the
latter being the most popular. Two well-known projec-
tion models mainly considered in the literature are the
perspective and the orthographic, with the latter as-
sumed when the object is far away from the camera.
More precisely, orthographic approximation yields
acceptable experimental results when the range in
depth values of the 3D points in the original 3D scene
is smaller than 10 percent of the average depth value.

Ullman in his classical work [0] proved that four
point correspondences over three frames are sufficient
to yield a unique solution to motion and structure up to
a reflection. In this direction, Huang and Lee in [1]
proposed a linear algorithm to obtain the 3D motion
and structure parameters of a rigid object, introducing
implicitly the epipolar equation. Based on the epipolar
equation, a number of relative approaches, deemed as
epipolar methods, have been presented in the literature,
including [3,4,9] among others. Shapiro et al [3] rely
on the affine epipolar lines' properties and solve the
affine epipolar line equation. A next step determines all
unknown camera motion parameters. In the same man-

ner, Xu and Sugimoto [9] solve the epipolar equation
and determine the three rotation angles (Eulerean an-
gles) in a second step. Ostuni and Dunn [4] utilize the
epipolar equation as well, along with a different
parametrization for the rotation matrix.

A somehow different approach under orthography
was presented in [2], which is widely known as the
factorization method. Tomasi and Kanade's solution in
[2] is based on a camera-centered problem representa-
tion, which may incorporate an arbitrary number of
point correspondences and frame transitions to achieve
robustness in the presence of noise. The solution relies
on decomposing the matrix containing all measure-
ments into camera motion and object shape. In the
same context, the factorization method has been ex-
tended to include paraperspective projection [6] and
sequential processing over a sequence of images [5].

A later approach, proposed by Xirouhakis and De-
lopoulos in [8], relies on the eigendecomposition of a
matrix formed on the basis of 2x2 matrices, modeling
in turn the projected motion of planar patches. As indi-
cated in [10], appropriate choice of the planar patches
(equivalently point triplets) greatly enhances the per-
formance of the algorithm.

In this work, the theoretical relation between the
three non-approximate methods, i.e. the proposed ap-
proach [8,10], the factorization [2] and the epipolar
methods [3,9] is discussed. At the same time, com-
parative simulated experiments are given, illustrating
the performance of the three algorithms.

2. BACKGROUND

The 3D motion and shape estimation problem under
orthography can be posed in the following manner:
assuming that three views/projections of a rigid 3D
object are available, containing at least four 2D points
( )ii yx ,  that their correspondence between frames is

known ( ) ( ) ( )iiiiii yxyxyx ′′′′→′′→ ,,, , compute the mo-

tion parameters for the two transitions, as well as the
depth iz  of all points. For rigid motion, the motion

parameters include the 3x3 rotation matrix R and the
3x1 translation vector T, so that
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for transition ( ) ( )iiii yxyx ′′→ ,, . A similar movement

equation is written for transition ( ) ( )iiii yxyx ′′′′→ ,,  for



distinct R and T. Due to the nature of the orthographic
projection, ( )iii zyx ,,  projects onto ( )ii yx , .

Supposing R=[rij], the epipolar equation for a transition
is written implicitly in [1] for T=0, as

031321323 =++′−′ iiii yrxryrxr .               (2)

The affine epipolar constraint equation

0=+++′−′ edycxybxa iiii ,                 (3)

(see [3] for details, p.154) constitutes an extension of
(2) to the weak perspective case, which in turn differs
from the orthographic one, only in the sense that it
permits a scale change between different views
( ) ( )iiii yfxfyx ′′→ ,, . Epipolar methods, in fact, solve

the homogeneous equation resulting by subtraction of
eq. (3) for the centroid of the point set from the respec-
tive eq. (3) for any available point correspondence; the
latter is achieved through the minimization of a cost
function involving the ‘scatter matrix’ [3]. The motion
parameters, as well as point depths, are estimated in a
second step [4,9].

A somehow different approach is given in the fac-
torization method [2]. A respective ‘measurement ma-
trix’ is formed (see [2], p.138), which in turn is ‘regis-
tered’ by subtraction of the centroid of the point set.
However, in this case no intermediate quantities (such
as the ‘epipolar geometry’) are estimated. The ‘regis-

tered measurement matrix’ W
~

 is proved to decom-
pose, in terms of singular-value-decomposition into

SR ⋅=W
~

,                                 (4)

where the rows of R represent the orientations of the
camera reference axes throughout the stream and the
columns of S the 3D coordinates of the employed
points.

In [8], matrix K models the projected motion of a
3D plane (defined by a point triplet) for a transition
between two frames. The theoretical definition of K for
a triplet of point correspondences is
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for zx aap /−= , zy aaq /−=  where [ ]Tzyx aaa=a

represents the unit vector perpendicular  to the plane,
and scalars p, q contain the plane orientation informa-
tion. 32xR  is the 2x3 matrix that contains the first two
rows of the rotation matrix R. As the available point
set contains more than 3 point correspondences, a 2x2
symmetric matrix Y is obtained on the basis of all Ks
(see [8,11] for details). From the latter, 3D motion pa-
rameters and 3D shape are obtained in a second step,
just after the eigen-decomposition of Y.

3. DISCUSSION

Since the proposed, the factorization and the epipolar
methods provide solutions for the same problem, they
are expected to have some mathematical relation. As
already stated, the type of the projection is not consid-
erable problem since all methods account for the or-
thographic case (the epipolar for f=1); or even for the
weak perspective case by considering [6] for the fac-
torization method. It should be pointed out here that,
for the proposed algorithm in the weak perspective
case, the unknown scale factors for both transitions
disappear in the final expressions yielding the rotation
parameters. In fact, it can be shown that the proposed
method is, in some sense, related to both others, having
at the same time one more convenient property for ro-
bust 3D motion estimation in the presence of noise.

In fact, matrix K in (5) incorporates the epipolar
equation for the particular triplet of point correspon-
dences. As a immediate result of (5),
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which in turn is identical to two (of the three) differen-
tial epipolar equations that can be formed from three
point correspondences. The latter can be verified by the
estimation procedure of K, given three point corre-
spondences [8]. In this context, matrix K not only
contains the epipolar equation, but also is formed in
terms of differential epipolar equations, similarly to the
‘scatter matrix’ of [3]. However, the point centroid is
not involved in every subtraction; on the contrary,
points are divided into point triplets in order to esti-
mate K.

Regarding the proposed approach, in relation to the
factorization method, it can be seen that similar expres-
sions hold for the estimation of 3D motion. In [2], ma-
trix R of eq. (4) is defined as containing the horizontal
and vertical camera reference axes throughout the
stream. In addition, the camera reference axes 0i , 0j
are initialized (see [2], p.139) to be aligned with the

world reference (e.g. [ ]T0 001=i  and [ ]T0 010=j ).

On the other hand, when the object rotates w.r.t. a 3x3
rotation matrix R, the camera equivalently rotates w.r.t.
RT. In this sense, matrix R incorporates the first two
rows of the rotation matrix for each transition. The
latter is closely related to matrix K, as introduced in
equation (5) of the present work; i.e. matrix K can be
'factorized' into  32xR  (containing the first two rows of
the rotation matrix) and a matrix containing shape pa-
rameters (p, q). As in the factorization method, a block
matrix could be similarly derived by enlarging K, that
is by adding Ks column-wise for more triplets and
row-wise for more frames.

With respect to the above, the proposed method is
closely mathematically related to both other ap-



proaches. The strategy followed in the factorization
method appears convenient for the incorporation of
more than three frames in the estimation of 3D struc-
ture, leading though to a too large 'measurement ma-
trix'. On the other hand, the convenient formulation of
appropriate point triplets is in this way absent. Simi-
larly, the epipolar methods by implicitly considering
the difference between the epipolar equation of each
point and the centroid, also lack this property.

In general, the three methods (the factorization, the
epipolar and the proposed one) lead to the solution of
an over-determined homogeneous system for some of
the rotation parameters as a first step. The following
steps depend on the formulation of the homogeneous
system. In addition, all methods take advantage of the
properties of eigen-decomposition or singular-value-
decomposition to eliminate the variance of i.i.d. noise
in motion vector estimates. The proposed method is
superior in this sense, as it manages to increase SNR in
differential motion field by appropriate formulation of
the point triplets [10].

This is because additive noise terms in matrix

quantities are in the form of I2
jσ  where I is the 2x2

identity matrix and scalar 2
jσ  equals
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for the j-th triplet of 2D points j
1r , j

2r  and j
3r  (see

[10]). In fact, the nominator of this ratio equals the sum
of the squared lengths of the triangle formed by the
three points, while the denominator is the squared area
of the corresponding rectangle. In this context, minimi-

zation of quantities I2
jσ , and thus noise terms, relies

on appropriate choice of the employed triplets so that
the ratio in (6) is minimized.

4. SIMULATION RESULTS

A number of simulated experiments were carried out in
error-prone environments in order to test the proposed
algorithm’s performance against other existing meth-
ods. For this purpose, the factorization, the epipolar
and the proposed method were implemented along the
lines of [2], [9,3] and [8,11] respectively.

In Figure 1, a computer generated model of a 3D
smooth surface is depicted. The model was subjected
to rigid movements in the 3D space and then projected,
in order to derive a number of noise-free motion fields.
The latter were artificially disturbed by i.i.d. noise. In
Figure 2, the (noisy) reconstructed, by the proposed
method, surface is depicted for SNR -10dB in the dif-
ferential motion fields.

The proposed approach seemed to be superior in
nearly all simulated experiments held. In Figures 3, 4
and 5, estimates of the rotation angle for varying SNR
level for a transition of the 3D surface are depicted.
Mean (solid line) and standard deviation (dash-dotted
line) estimates of the rotation angle using the factori-
zation, the epipolar and the proposed method respec-
tively, are illustrated. The estimates were obtained
through 50 Monte Carlo runs for each SNR level. In
each run, the same set of noise-contaminated point
correspondences was fed to all three algorithms. The
true value for the particular rotation angle was

o
R 17=φ . The proposed approach performed better

than both the factorization and the epipolar method, in
particular in the presence of noise resulting to low
SNRs. It can be though pointed out that both the fac-
torization and the epipolar method illustrate smaller
standard deviation estimates compared to the proposed
method for higher SNR levels. This is possibly due to
the strategy adopted in the formulation of point triplets.

Figure 1. Original smooth 3D surface

Figure 2. Reconstructed (noisy) 3D surface



5. CONCLUSIONS

In this work, the method proposed in [8,10] for 3D
motion and shape estimation of rigid objects from or-
thographic projections is revisited and tested against
existing approaches.

The proposed algorithm seems to be more efficient,
compared to others, providing improved estimates of
3D motion in most cases. Superior estimates are ob-
tained in the presence of particular noise for very low
SNRs, where the rest algorithms fail.

Although the proposed algorithm performs gener-
ally better than the others, it has been shown that there
is a strong mathematical relation with each one of
them. Nevertheless, both the factorization and the
epipolar methods lack the comfortable property of
minimizing the effect of the noise terms, by appropri-
ately selecting the point triplets fed to the algorithm.
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Figure 3. Estimated angle (factorization method)

Figure 4. Estimated angle (epipolar method)

Figure 5. Estimated angle (proposed method)


