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Abstract

This work provides an experimental evaluation of var-
ious existing approaches for some of the major problems
content based image retrieval applications are faced with.
More specifically, global color representation, indexing and
navigation methods are analyzed and insight is provided re-
garding their efficiency and applicability. Furthermore this
paper proposes and evaluates the combined use of FastMap
andkd-trees to enable accurate and fast retrieval in image
databases.

1. Introduction

The main goal of content based image retrieval research
is to devise suitable representations of images in order to
allow query and retrieval based on the visual properties of
images and not user annotations. Often the queries them-
selves are images and the user expects similar images to be
retrieved.

Significant research has been performed on image re-
trieval systems in the past few years and the promising re-
sults contributed to the development of the MPEG-7 stan-
dard ( [7, 11]). The ultimate goal of automatic seman-
tic characterization of images based on their visual con-
tent remains largely unsolved (even though there are par-
tially successful approaches under controlled environments
e.g., [2, 6]). Still, the simple descriptions of images based
on color, textures, shapes etc. provide adequate results for
a user to begin a search (the authors believe that navigation
and inspection will always be a part of any retrieval system).

Apart from efficient image representation, however, a
practical image retrieval application has additional require-
ments. Queries must be answered fast, hence appropriate
indexing mechanisms must be employed as well. The prob-
lem is that often images are represented as points in a high
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dimensional (> 10 dimensions) space and searching for
similar images becomes a problem of finding the nearest
neighbors of the given query point in that space. This a
problem of very high computational cost for a large number
of database entries and the major obstacle that prevents the
development of large scale image databases. Furthermore,
often descriptions of images are not points in a space, pre-
venting the use of indexing data structures provided by the-
oretical computer science research. As a final point, user in-
terfaces should assist navigation through the database con-
tents by grouping similar images, a problem that adds ad-
ditional difficulties in the already complex image retrieval
system.

This paper provides the experimental evaluation of
known methods to the following problems: Global color
representation (Section 2), indexing (Section 3) and brows-
ing (Section 4). Additionally, it proposes a different ap-
proach to controlling the dimensionality of the image rep-
resentation via the FastMap algorithm (Section 5). The ex-
perimental results show that a lower number of dimensions
can be used (thus faster indexing) without significant loss in
retrieval efficiency.

2. Global color representation

2.1. Histogram and dominant color

Global color descriptors are used to describe the color
properties of an image independent of spatial color distri-
bution. The most important descriptors of this form are
the well known color histogram and the dominant color de-
scriptors.

Both these image properties are described by

D = {{ci, pi} , i = 1, . . . , N} (1)

whereci is a color from a predefined colorspace andpi is
the percentage of image pixels having that color. Of course,
having a3-channel8-bits per channel image described by



(1) is very impractical, since (i)2N = 225 values are used
to describe a single image and (ii) this level of granularity
is not informative for the purpose of image retrieval. There-
fore, images are quantized prior to extraction ofD.

In histograms, the given colorspace (e.g., RGB) is usu-
ally quantized to a predefined number of “bins” independent
of the images. While this approach can reduce the number
of values required forD (the colorsci are essentially pre-
defined for a given image format), the description does not
adapt to each image. Consider, for example, a24-bit RGB
image with only64 different colors all at the same color
region. Then, if the colorspace is quantized atN = 12 lev-
els (4 levels for each color channel), all these colors will be
concentrated at a single bin; the rest of the11 color-value
pairs are left unused.

The dominant color descriptor, on the other hand, over-
comes this issue by allowing the use of the more general
form of (1) where the colorsci and their numberN can be
different for each individual image. Naturally, a method for
selecting the appropriate dominant colorsci for each im-
age must be defined. In [7] regarding the MPEG-7 standard
color descriptor the use of the Generalized Lloyd Algorithm
is proposed. In this work, a different approach utilizing oc-
trees for color reduction [4] was used.

An issue with the dominant color approach is that the
definition of an effective distance metric comparing descrip-
tors is not as straightforward. The next section deals with
the evaluation of two distance metrics used to compare the
descriptorsD.

2.2. Evaluation of distance metrics

Given a predefined set of colorsci, i = 1, . . . , N , aN ×
N matrix A where each elementajk of A is the distance
betweencj andck in their colorspace and two vectorsh1

andh2 with the percentages of each colorci, the quadratic
histogram distance given by

dh(h1, h2) = (h1 − h2)
T A(h1 − h2) (2)

However, Equation (2) cannot be used if the colorsci and
their numberN are different for each image.

Denget al. proposed a similar quadratic metric in [1],
for the dominant color descriptor. IfD1 = {{ci, pi}, i =
1, . . . , N1} andD2 = {{bj , qj}, j = 1, . . . , N2} are two
dominant color descriptors, then the distance betweenD1

andD2 is defined to be

dq(D1,D2) =

N1
∑

i=1

p2

1
+

N2
∑

j=1

q2

j −

N1
∑

i=1

N2
∑

j=1

2aijpiqj (3)

where the similarity coefficientaij is

aij =

{

1 − dij/dmax, dij ≤ Td

0, dij > Td

(4)

dij = ‖ci − bj‖ is the euclidian distance betweenci andbj ,
dmax = αTd, α is an arbitrary value andTd is the maximum
distance for two colors to be considered similar.

Another metric that has been proposed for comparing
two dominant color descriptorsD1 and D2 is the Earth
Mover’s Distance (EMD). In simple terms, the EMD is a
dissimilarity measure between two images indicating the
amount of “work” required to “move” from the descriptor
D1 of the first image toD2 of the second. Imagine the col-
orsci in the first descriptor as locations in a field with piles
of pi mass of earth each. The colorsbj are also locations,
but they consist of holes with capacityqj earth each. EMD
denotes the minimum work required to distribute the piles
of earth atci to the holes inbj . Computation of the EMD
is based on a solution of the transportation problem and is
covered in [10].

A simple experiment was setup in order to evaluate the
performance of each distance metric in a realistic image
database scenario. All 5122 images in the corel dataset
were indexed based on dominant color descriptors with 16
color/percentage pairs. The performance of each distance
metric was evaluated by the firstNC results for each im-
age, whereNC is the number of images in its categoryC.
More specifically, for each image in every category of the
dataset a query was performed and the topNC results were
retrieved. Then, the precision was measured based on the
results retrieved from the same category as well as their po-
sition i.e.,

precisionC =

N
∑

n=1

An

N
∑

n=1

1/n

(5)

whereAn = 1/n if the n’th result belongs inC and zero
otherwise. For the interpretation of precision values, note
that expecting to retrieve the best results at a semantic level
(same category) using only a global color descriptor is way
too optimistic. It can be used, however, to compare the two
distance measures.

A graph of the results is given in Figure 1, where the
horizontal axis corresponds to categories in the corel im-
age dataset and the vertical axis is the precision (average
value for all images in a category). The results are clearly
in favour of the EMD, that consistently achieved higher pre-
cision compared to the quadratic distance.

3. Indexing

3.1. Image databases and dimensionality

By far the most important problem of image databases is
the high dimensionality of the descriptors used, effectively
leading to a prohibitive computational cost of indexing and
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Figure 1. Results for retrieval based on dom-
inant color descriptors with quadratic dis-
tance and EMD. Precision (Eq. (5)) vs. cat-
egory.

retrieval for a large number of entries. This, actually, is the
reason why a content-based image retrieval system cannot
be implemented for large scale datasets, such as the Internet.

In theoretical computer science the problem of “Near-
est Neighbor” search in high dimensional spaces has been
a very active research topic in the past few years. One of
the most popular indexing data structures proposed is the
kd-tree [8]. The idea is to construct a binary tree by succes-
sively using elements of the dataset as pivot points to par-
tition the k-dimensional space into hyperrectangles, each
containing at most one point. When searching, an initial
estimate of the nearest neighbor is provided and then only
hyperrectangles and pivot points that are possible to con-
tain a point closer to the query than the initial estimate are
visited. Thus, withkd-trees only a subset of the indexed
points (i.e., database images) are visited, compared to the
exhaustive search where the query is compared against all
points in the dataset. The drawback is that the complexity
for each point visit is increased (since branching conditions
etc. have to be evaluated).

3.2. Limits of kd-tree effectiveness

In order to examine the behaviour ofkd-trees w.r.t. the
dimensionality of the space considered, thekd-tree data
structure and associated algorithms were implemented and
a dataset of105 uniformly distributed random points was
created for various dimensions. The number of nodes vis-
ited per dimension was measured and the results are given
in Figure 2 (a).

The number of points visited for a number of dimensions
close to 30 is practically the complete dataset and the use
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Figure 2. (a) Number of visits for nearest
neighbor search in the kd-tree for a dataset
of 105 uniformly distributed random points.
(b) Time for nearest neighbor search in ms
for the kd-tree and exhaustive search for vari-
ous dimensions on an average personal com-
puter.

of kd-tree has no advantage over the exhaustive search. In
fact, the upper limit of dimensions that thekd-tree is useful
is lower, since each visit has additional costs in terms of
CPU time. Figure 2 (b) provides the time (in ms) required
per dimension for indexing performed on the same dataset
usingkd-trees and exhaustive search on an average personal
computer.

These results indicate that for the test computer thekd-
tree keeps an advantage in terms of computational time for 8
dimensions or less. Furthermore, through the experiments
conducted, it was observed that the efficiency of thekd-
tree search is largely dependent on the size of the dataset
to be searched. Larger datasets allow for thekd-tree to be
more efficient in even higher dimensions, compared to ex-
haustive searching. Also, note that a uniform dataset is the
worst case scenario;kd-tree searches are significately faster



within distinctively clustered datasets.

4. Browsing

Users often wish to browse the images in a database or
the results retrieved from a query. An effective browsing
interface is one that groups similar images together mak-
ing the task of browsing easier for the user. This require-
ment can be translated to the following problem statement:
“Given the observed distancesdij between any two objects
(images in a database), produce a configuration of points in
then-dimensional space, such that the new distancesd′ij are
as close as possible to the originaldij for all the points”. An
popular measure of effectiveness for a solution is Kruskal’s
stressfunction (6) [5].

stress=

[

∑

i,j(d
′

ij − dij)
2

∑

i,j d2

ij

]1/2

(6)

4.1. MDS and FastMap

Two approaches were evaluated for the mapping prob-
lem, namely metric Multidimensional Scaling (MDS) [9]
and the FastMap algorithm [3]. Metric MDS is a technique
that receives as input the observed dissimilaritiesdij be-
tween points and produces a configurationP ′ of points in
the n-dimensional space through an iterative optimization
process. For visualization and navigation purposes,n = 2
was used. It is interesting to note that contrary to embedding
approaches such as PCA, the original points are not known
or may not exist. Only the distances between objects must
be observed. This is convenient for use with the dominant
color descriptor, since the latter does not define points in a
vector space. The complexity of MDS isO(N2), whereN
is the number of objects.

FastMap is an approach that solves the same problem as
MDS, but computationally it is much more effective, since
its complexity isO(nN), wheren is the number of dimen-
sions of the target configuration. In the conducted experi-
ments using the corel dataset MDS provided better results
in terms of the stress function (see Figure 3). Its high com-
putational cost, however was prohibitive for relatively large
image collections. An example of a browsing interface that
uses FastMap forn = 2 is shown in Figure 4 (a). The vi-
sualization result for a larger dataset using the experimen-
tation environment that was developed is shown in Figure 4
(b).

5. Efficient indexing with FastMap and kd-
trees

Color / percentage pairs in dominant color descriptors do
not define points in ak-dimensional space. Therefore,kd-
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Figure 3. MDS vs. FastMap stress perfor-
mance for various dimensions. Experiment
for 500 images.

trees cannot be directly applied for indexing in this case.
Even if the descriptorsD were to be interpreted as feature
vectors with each element (color value or percentage) cor-
responding to a separate dimension, using 16 colors leads
to 32-dimensional feature vectors thatkd-trees cannot han-
dle efficiently. This section proposes the combined use of
FastMap andkd-trees to address these issues.

5.1. Efficiency of FastMap configurations

Given a dominant color descriptorDi for each imageIi

in the database, the EMD measuresdij betweenIi andIj

are computed for alli, j. Subsequently, FastMap is applied
to create a configurationPn of n-dimensional points, one
for each image. This allows the use ofkd-trees for indexing.
The questions that naturally arise have to do (i) with the
quality of the retrieval results and (ii) how these results are
affected by the choice ofn.

Using the ranking results obtained from EMD based
queries (Section 2) as ground truth, the performance of the
FastMap configurations for image retrieval was evaluated as
follows. All 5122 images of the corel dataset were consid-
ered as queries successively and for each index in the EMD
results, the corresponding index in the FastMap processed
query were noted. For example, a query image from the
“action sailing” category gives2 4 which reads “the 2nd
result of EMD was ranked 4th using FastMap”. Figure 5
shows an example of the rank results for a random image
and the average for all images forn = 6.

Figure 5 shows that even though the results of EMD
ranking and those of FastMap configurations are not identi-
cal, they are averagely very close to each other at6 dimen-
sions. The similarity is practically not improved if more
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Figure 4. (a) Result of applying FastMap for
two dimensions on a set of images from three
categories of the corel dataset. (b) Naviga-
tion on a larger dataset. Users can zoom in
specific areas, modify all distances by a fac-
tor and select specific images.

than10 dimensions are used. Hence one may conclude from
this experiment thatby using FastMap configuration for in-
dexing, the retrieval does not deviate significantly from the
EMD results. It is therefore highly unlikely to find images
ranked in the first results by EMD at the lower ranks (i.e.,
least similar results) of FastMap based retrieval.

In order to quantify this result, one more experiment
was conducted. Two images were selected at random from
each category (resulting in 100 images in total) and the
retrieval results for these images were observed for EMD
and FastMap, as in the previous. Then, the distribution of
the variabledr(I, dim) = |rFastMap(I, dim)− rEMD(I)|
was calculated for1 to 32 dimensions, whereI is an im-
age,dim = 1, . . . , 32 a dimension andrFastMap(I, dim),
rEMD(I) are the ranks of FastMap and EMD based re-
trieval correspondingly forI anddim (Figure 6 (a) shows
the result fordim = 6 dimensions for a random image).
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Figure 5. Example rank results for n = 6 di-
mensions. The EMD rank (ground truth) is
the y = x line. (a) Results for a random im-
age. (b) The average for all images.

The probabilitiesPI(dr ≤ k) that the difference in rank
will be less thank positions was also calculated for all di-
mensions and all images. The expected valuesE{PI(dr ≤
k)} are shown in Figure 6 (b) for variousk.

Notice that the expected probability of FastMap and
EMD results having a difference lower than100 is about
0.5 at 6 dimensions. However, the probability that the dif-
ference will be lower than800 is close to1 (approximately
0.95). Hence the observations made previously are con-
firmed quantitatively.

6. Conclusions

From the results of the previous sections several useful
conclusions can be drawn.

For the global color representation and specifically the
dominant color descriptor, the Earth Mover’s Distance ap-
peared to be the most accurate distance metric in the con-
ducted experiments.
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Figure 6. (a) The distribution (histogram) of
dr of a randomly selected image for 6 dimen-
sions. (b) The expected value of PI(dr ≤ k)
for k = 100, 200, 500, 800.

For the indexing problem,kd-trees were more effective
than exhaustive search, but their practical application islim-
ited to a relatively low number of dimensions. Moreover,
kd-tree structures index points in ak-dimensional space that
dominant color descriptors do not provide.

For visualization and navigation purposes, the MDS ap-
proach proved more precise than FastMap in terms of the
stress measure. However its practical use is limited due its
high computational cost. FastMap is better suited to large-
scale image databases.

Finally, a series of experiments showed that apart from
navigation purposes, FastMap can be efficiently used for in-
dexing as well. Constructing6 to 10 dimensional configu-
rations in FastMap allows the exploitation ofkd-trees for
faster indexing while keeping the ranking results at accept-
able levels. It is important to note that these experiments
were performed using EMD results as the ground truth, in
lack of another absolute ranking measure. Hence, for the
end user the retrieval might as well be better than the one

indicated by the values of Figure 6 (b) that only provide
the probabilities that the difference between an EMD and a
FastMap based ranking will be kept below a certain limit.

The approaches evaluated in this work are by no means
exhaustive and the authors believe that a future work with
more extensive experimental analysis including other ap-
proaches to these problems will prove useful to those inter-
ested in developing practical and possibly large scale image
retrieval applications.
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