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ABSTRACT

Recognition of voiced speech phonemes is addressed in
this paper using features extracted from the bispectrum
of the speech signal. Voiced speech is modeled as a su-
perposition of coupled harmonics, located at frequencies
that are multiples of the pitch and modulated by the vo-
cal tract. For this type of signal, nonzero bispectral val-
ues are shown to be guaranteed by the estimation pro-
cedure employed. The vocal tract frequency response is
reconstructed from the bispectrum on a set of frequency
points that are multiples of the pitch. An AR model is
next fitted on this transfer function. The AR, coefficients
are used as the feature vector for the subsequent classi-
fication step. Any finite dimension vector classifier can
be employed at this point. Experiments using the LVQ
neural classifier give satisfactory classification scores on
real speech data, extracted from the DARPA/TIMIT
speech corpus.

1 INTRODUCTION

In a composite continuous speech recognition system,
successful operation of the baseline subsystem that rec-
ognizes elementary units of speech, is crucial to the suc-
cess of the following levels of speech recognition and
understanding. In the present paper we aim towards
recognition of voiced speech phonemes, based on a set of
features extracted parametrically from the bispectrum
of the speech signal.

The basic assumption underlying the proposed
method is that voiced speech can be modeled as super-
position of coupled harmonics, located at frequencies
that are multiples of the pitch frequency, and modulat-
ed by a linear AR filter which models the vocal tract,
[1]. The analysis proposed in this work employs the
bispectrum of the voiced speech signal, [3]. The latter
is proved here to yield non-zero estimates from finite-
length speech records - a behavior earlier observed in
[7]. The bispectrum serves as a basis for the reconstruc-
tion of the vocal tract transfer function on a specific set
of frequency points. This involves inverting the vocal
tract input-output relation in the bispectrum domain.
A modification of the signal reconstruction algorithm
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of [5] is employed at this point. An AR model is next
fitted on the vocal tract transfer function, using stan-
dard TIR filter design methods. AR filters are known to
provide a good model for the vocal tract during voiced
speech production. The AR parameters form the set of
features upon which classification of voiced phonemes is
performed. Any standard classifier can be used at this
step, such as the LVQ neural network classifier.
Because of its third-order domain basis, the proposed
method offers the advantages (i) of providing a more
accurate model of the phoneme-dependent vocal tract
transfer function, as it retains phase information, and
(ii) of being robust to all symmetrically distributed ad-
ditive noises. In addition, it is proved to be robust to
harmonic components present in the additive noise, as
far as their frequencies are not coupled with the pitch.
This latter feature of the proposed method is of signifi-
cant practical interest. Limited-scale recognition exper-
iments using synthetic and real speech data give results
that compare favorably with those of standard methods.
In that sense, the proposed method provides a viable al-
ternative, which in addition enhances our understanding
of certain aspects of the bispectrum of voiced speech.

2 A MODEL FOR VOICED SPEECH SIG-
NALS

A simplified model for the physiological mechanism of
speech production is shown in Figure 1, where the switch
position is up [down] for voiced [unvoiced] speech, [1].
Speech signal is the output of a linear, AR-type filter,
whose transfer function is

H(w) = 1/A(w) = 1/2 azel’ (1)

and which models the vocal tract along with the position
of the lips and tongue. The filter is assumed practically
time-invariant for the duration of the a certain phoneme.
In the voiced speech case, the input i(¢) is an impulse
train whose 1impulses are located at positions that are
multiples of the fundamental pitch period. This signal
is equivalent to a superposition of harmonics whose fre-
quencies are multiples of the pitch frequency, by the



Poisson summation formula, [4]. This superposition of
“equispaced” harmonics can be split into triplets of the
general form

l‘(t) = A oJ (Aat+d1) + Aq oJ (A2t+d2) + As 6j<>\3t+¢3), (2)

where Az = A; + Az . To obtain the impulse train i(?)
from this expression, one should use A;23 = 1 and
¢1,2,3 = 0 in each triplet. Consequently, frequency cou-
pling is present in the input signal ().

Because the vocal tract transfer function is linear, out-
put contains harmonics of the same frequencies, modu-
lated in amplitude and shifted in phase. Coupling is
therefore reproduced in the output signal, which can be
described as

L
s(t) = ZAl,l(/\1,l)ej(’\lﬂ+¢1,z) 3)
=1

+ AZ,I(/\Z,I) ej(>\2,lt+¢2,l) + AS,I(/\S,I) ej(>\3,lt+¢3,l)’

where A; (A1), ¢ = 1,2,3 are the amplitude modula-
tion coefficients and ¢; ;(A; 1), ¢ = 1,2,3 are the phase
delays caused by the AR filter. A synthetic example
of the output (speech) signal of such a model is shown
in Figure 2 (time and frequency domain). Frequency
coupling is clearly present in the output.

The signals y(#) considered here contain voiced speech
contaminated by additive noise,

M

y(t) = s(t) + D Anel ! 4 o(t), (4)

m=1
where the last two components account for the noise,
including harmonics and random noise v(t). The har-
monics should not be coupled in frequency with the sig-
nal, i.e. their frequencies should not lie on multiples of
the pitch, and the random noise v(t) is assumed to be

symmetrically distributed.

3 BISPECTRUM ESTIMATES OF VOICED
SPEECH

For a signal s(t) as in eq. (3) and under the alterna-
tive condition that phases ¢;; are random variables u-
niformly distributed in [—m, 7], it is shown in [6] that
the bispectrum Bss(wy,ws) is identically zero if on-
ly quadratic frequency coupling is present, while it is
non-zero if both quadratic frequency and phase coupling
(@31 = @11+ ¢21 ) are present. In the latter case, the
bispectrum contains impulses at the coordinates of the
coupled frequencies, (A1, Az).

In the present work we show that phase coupling
and, consequently, non-zero values of the bispectral es-
timates, can be produced through the estimation proce-
dure employed (bi-periodogram with averaging over seg-
ments). The bispectrum is estimated as

B3s(w1,w2) = B, p(wi,wa) (5)

K
1
= K E Sk(wl) Sk((.dz) SZ(wl —|—w2),
k=1

where Si(w) is the Fourier transform of the signal seg-
ment s () 2 st+k),t=0,1,...,N — 1 of length N,
starting at time point k.
Due to eq. (3) the k-th segment si(t) can be written
as
L ' .
sp(t) = Z Ar (A1) eI it 4+27 ) (6)
=1
4 Ay (Agy) P2t Lo Ag (g ) e Pt P50

where <I>l»“7, = [¢; 1+ kA; 1] mod 27, i =1,2,3. If we use

k3
Az37 = A1+ Az in the equation above, we obtain

q)]?f,l = q)]f,l + q)g,l + C(A11, A2). (7)

C(A11,A01) = 31— @11 — ¢2,1 Is a constant w.r.t. k.

If the starting points k of the corresponding segments
s (1) are chosen at random, then the phases <I>fl are ran-
dom variables, uniformly distributed in [—71',771']. This
property is retained if the starting points are equis-
paced, provided that we (i) exclude the special case
where the segment spacing is an exact multiple of some
T;1 = 1/X;; and (i) let the number K of segments em-
ployed in eq. (5) become large.

The bispectrum of such signals takes on zero val-
ues except at the bi-frequency points [A1 7, Ao ;] where
it peaks. The proof of this fact for non-zero values of
the deterministic phase offset C'(A1;, A2;) is an exten-
sion of the corresponding proof for C' = 0 in [6].

As a result, the bispectrum estimate of the output
signal y(n), Bgy((.dl,WQ), obtained through the above
estimation procedure, takes on non-zero values only on
a grid of bi-frequency points that are multiples of the
pitch. Here we have used the fact that Bgy (wi,we) =
Bgs (w1, w2), because under the assumptions made in the
previous section the bispectra of the last two compo-
nents in eq.(4) are (ideally) zero. The non-zero bispec-
tral values, given by

BSy(Al,l; Aoy HA D)HA2 D) H (M1 4+ A21)  (8)

(apart from a scalar ambiguity factor) leak into s-
moother peaks, because of the finite window imposed
on the data by the estimation procedure. The pitch
that will give us the grid of bi-frequency points, can be
obtained either independently, or by picking and refin-
ing the peak values of Bgs(/\u, Az.1). This behavior is
illustrated in Figure 4, which shows the 3D-plot and con-
tours of the first quadrant of the bispectrum estimated
from the voiced phoneme /ah/, shown in Figure 3. The
pitch in this case is 0.09 rad.

4 ESTIMATION AND MODELING OF THE
VOCAL TRACT TRANSFER FUNCTION

The transfer function H(w), and consequently the AR
coefficients a;,7 = 1,...,p that characterize the vocal



tract, can be obtained if we solve eq. (8) for H(w).
This employs the solution of two overdetermined linear
systems, one for the log-magnitude p(w) and one for the
phase ¢(w) of H(w). Both linear systems involve bispec-
tral ordinates at bi-frequency plane positions [A1 1, As ]
= [kifp, kafp], where f, denotes the pitch and k1, ko are
positive integers. The systems are formed by concate-
nation of equations obtained if we equate (i) phases and
(ii) log-magnitudes of the two sides of eq. (8), along the
lines of [5], namely

P35 (k1, ko) = @(k1) + ¢(ka) — (k1 + k2),  (9)

p3s (ki ko) = p(ky) + plka) + p(ky + ka), (10)
where Bgs(kl, ko) = exp[ pss(k1, ko)] exp[ioas(ki, k2)).

The systems formed are overdetermined and are
solved for p(k) and ¢(k) in the least squares sense.
The estimated transfer function ordinates, f[(k) =
exp[u(k)] exp[ jo(k) ] lie on frequency points kf, that
are multiples of the pitch.

The transfer function estimates characterizes the vo-
cal tract and it could be used by itself as a feature for
classification. However, because of the employed estima-
tion method, the estimated ordinates f](k) correspond
to pitch-dependent frequency points. To remove this
dependency and obtain feature vectors of equal dimen-
sions, we next model H(w) as an AR filter of a given
order, say p, and use the AR coefficients as the feature
set for classification. Standard IIR filter design methods
can be used in this step.

5 CLASSIFICATION OF VOICED SPEECH
PHONEMES

Following the procedure described above, classification
can be based on the set of AR coefficients character-
izing the vocal tract, or on a subset of them. Figure
5 shows the estimated transfer functions computed for
five utterances of the voiced phonemes /aa/ (top) and
/iy/ (bottom). The corresponding signals are obtained
from DARPA/TIMIT database, and belong to different
speakers, under different contexts. The corresponding
AR(p = 7) coefficients are shown in Figure 6, top and
bottom, respectively. These figures illustrate the fact
that the AR coefficients are discriminative features.

Any finite-dimension vector classification scheme can
be employed next. Experiments using the Learning Vec-
tor Quantization (LVQ) classifier, [2], have given sat-
isfactory classification scores on real speech data from
TIMIT.
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Figure 2: Synthetic speech, time (top) and frequency
(bottom) domains.
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Figure 3: Voiced speech signal /ah/.
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Figure 4: Bispectrum, 1st quadrant and contours.
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Figure 5: Reconstructed transfer functions of 5 utter- . .
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