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Abstract— This paper proposes a methodology for modeling
the process of semantic identification and controlling its complex-
ity and accuracy of the results. Each semantic entity is defined
in terms of lower level semantic entities and low level features
that can be automatically extracted, while different membership
degrees are assigned to each one of the entities participating in a
definition, depending on their importance for the identification.
By selecting only a subset of the features that are used to define
a semantic entity both complexity and accuracy of the results are
reduced. It is possible, however, to design the identification using
the metrics introduced, so that satisfactory results are obtained,
while complexity remains below some required limit.

I. INTRODUCTION

The vast amount of data in multimedia collections and
the need for better human-computer interaction in modern
applications require the content management of multimedia
data at a semantic level. Recent standardization efforts such
as the MPEG-7 [1] provide the means to describe content
while algorithms and techniques are introduced that aim at the
automatic extraction of semantic information from multimedia
documents (see, for example [2] and [3]). This paper proposes
a general model which can be adopted by such techniques in
order to achieve higher expressive capabilities in the semantic
analysis process, but mainly to achieve complexity control
so that the analysis can cope with the requirements and
limitations of real life applications.

Identification of a semantic entity (an event, an object etc)
is essentially equivalent to the computation of the degree up
to which the entity exists in a multimedia document. Lower
level features are used to assess this degree and based on the
assumption that often some features are more important than
others, we use metrics that allow us to estimate the validity
of the identification process if only a subset of the features is
used. Hence we may obtain satisfactory results while at the
same time the computational cost is reduced.

The Fuzzy Semantic Encyclopedia acts as a knowledge base
providing definitions of high level entities using lower level
features and is presented in section II. The metrics required
to measure the existence of an entity in a document i.e., the
certainty of the identification, the validity of this process as
well as its complexity are presented in section III. Design
methods that optimize the identification with limited resources
are also presented in the same section. While section III refers

to semantic entities related directly to syntactic properties,
section IV extends these results to the identification of entities
containing other (lower level) semantic entities in their defini-
tions. Three types of substitution procedures are proposed to
cope with this scenario. Examples and experiments displaying
and evaluating the proposed method are presented in section
V while section VI includes remarks and future perspectives
of this work.

II. FUZZY SEMANTIC ENCYCLOPEDIA

As mentioned above, semantic analysis relies on the defini-
tion of higher level entities in terms of lower level syntactic
features of the document. Such features are quantities that
machines are able to compute and can be viewed as the
alphabet that is used to form definitions of high level entities
in the same sense that letters form words. These definitions
construct a knowledge base that we call Fuzzy Semantic
Encyclopedia and is presented in this section. The structural
elements of the Encyclopedia are the Syntactic and Semantic
Entities.

A. Syntactic Entities

As syntactic feature t we define any measurable quantity
(e.g., brightness, frequency) that can be obtained by applying
a corresponding algorithm τ on the given data set (e.g., on
a scene, an image or a signal). For simplicity, we assume
syntactic features with real values, either 1-dimensional (e.g.,
brightness on R) or multidimensional (e.g., color on R

3).
A Syntactic Entity or property yi(t) ∈ [0, 1] is a fuzzy set on

a syntactic feature t. For example the property “very bright”
is defined on the feature “brightness” and the property “red”
is defined on the feature “color”. We assign a label Yi to a
particular Syntactic Entity yi(t) and assume a finite set Y =
{Yi} of such labels corresponding to the entire collection of
Syntactic Entities of interest. In general, if tτ is the outcome of
algorithm τ that “measures” t, the membership value µYi

≡
yi(tτ ) corresponds to the degree that the particular data set
assumes property Yi.

B. Semantic Entities

As the name implies, the term Semantic Entity refers
to higher level objects or concepts that cannot be directly
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Fig. 1. Definitions of three Semantic Entities in a graph representation. Note
that B is indirectly related with the Syntactic Entities in C and similarly A
is related with the Syntactic Entities in both B and C.

measured and are closer to human perception. Each Semantic
Entity is assigned a label Ek ∈ E, where E is the set of
all Semantic Entities considered. The Semantic Encyclopedia
is built on the assumption that a Semantic Entity Ek can be
described using other lower level Semantic as well as Syntactic
Entities which collectively form the scope SEk

of Ek. Any
scope SEk

is a subset of S = Y∪E, the set of all Semantic
and Syntactic Entities. For example, one may describe Entity
A with scope SA = {a, B}, where B is in turn described using
SB = {C, a} and C with SC = {a, b} as Figure 1 illustrates.
Notice that lowercase and uppercase letters denote Syntactic
and Semantic Entities respectively.

Descriptions of this form simply state that existence of a
Syntactic or Semantic Entity implies the existence of a higher
level Semantic Entity (a and B imply the existence of A, in
the example above). This is equivalent to assuming inference
propositions of the form

pSiEk
: Si ⇒ Ek, for all Si ∈ SEk

.

However in most cases inference is valid up to a certain
degree FSiEk

∈ [0, 1] quantifying our belief regarding the
truth of each proposition pSiEk

. In that sense each description
corresponds to a discrete fuzzy set of the form

Ek = F1k/S1 + F2k/S2 + . . . + Fnk/Sn, (1)

where Fik ≡ FSiEk
, that is called a definition of Ek . In the

definition trees of Figure 1 the degrees FSiEk
are presented

as weights to the edges of each tree.
Definitions of the form of Equation (1) that are included

in the Encyclopedia are called primary definitions and as
explained, may contain both Syntactic and Semantic Entities.
For a definition that is based only on Syntactic Entities we
reserve the term detailed definition and is of the form

Ek = F1k/Y1 + F2k/Y2 + . . . + Fnk/Yn, (2)

where Yi ∈ Y. Any non-detailed primary definition can be
transformed into a detailed one, using a substitution procedure,
as shown in section IV-A.

Some comments on the Encyclopedia are worth to be made.
The expertise of the system (what we assume that an “expert”
provides) is essentially the values of the weights F . As for
the expressive capabilities of the Encyclopedia in defining
Semantic Entities, we note that these strongly depend on

the number of features that are used to extract low level
information and the accuracy of the corresponding algorithms.

III. SEMANTIC INFERENCE

On the basis of the definitions included in the Semantic
Encyclopedia, it is possible to perform the actual search by
evaluating the values µYi

of the Syntactic Entities involved.
This is achieved by using metrics that quantify the existence
of Semantic Entities, given the algorithm results.

A. Metrics of Identification

Evaluation of a Syntactic Entity Yi participating in a detailed
definition is equivalent to running its corresponding algorithm
τ and computing the membership degree µYi

up to which the
document under examination assumes property Yi, as stated
in section II-A. In a similar manner, a metric is defined that
denotes the degree up to which a Semantic Entity exists in a
document and is called Certainty of the identification. Given
a detailed definition of a Semantic Entity Ek in the form of
Equation (2) and the membership degrees µYi

of the Syntactic
Entities Yi in a specific document, Certainty that Ek exists in
that document is defined as

µEk

4
= U

i
(I(FYiEk

, µYi
)) (3)

where the operators U and I denote fuzzy union and intersec-
tion operators respectively.

The maximum possible value of µEk
is assigned the term

Validity of the definition and is equal to

V(Ek)
4
= U

i
(FYiEk

), (4)

attained for µYi
= 1 for all Yi in the scope of Ek and the use

of the identity I(a, 1) = a (true for every t-norm I).
Validity denotes the maximum amount of information that

a definition can provide and is used extensively in the iden-
tification design process, explained in III-D. We must note
that Validity is independent of the data set under examination
and can be computed prior to the identification. Validity is
therefore a property of the definition itself.

Another characteristic of a definition is the computational
complexity associated with the algorithms corresponding to
its Syntactic Entities. We assign a computational cost c(t) to
every syntactic feature t that is essentially equal to the cost
of it’s corresponding algorithm τ . Hence, we may now define
Complexity of a definition as

C(Ek) =
∑

i

c(ti) (5)

where ti are the syntactic features required to evaluate the
properties Yi of the definition Ek. Notice that this value
will normally depend on the size of the input data, as will
the values c(ti). At least, though, worst or average case
expressions of c(ti) can be considered as independent of the



actual content of the examined data sets. In this perspective
C(Ek) is also computable prior to identification.

Certainty, Complexity and Validity have been introduced for
detailed definitions so far, but these metrics are applied to any
definition, since each one of them can be transformed into
a detailed one. Moreover, once the Certainty of an Entity is
available, the latter can be treated in the same way a Syntactic
Entity is treated in a detailed definition. All the previous are
shown in detail in section IV, but for mathematical conve-
nience we first deal with the expression of definitions using
fuzzy relations, as well as with the design of the identification
process for detailed definitions.

B. Representation of Definitions using Fuzzy Relations

A fuzzy relation that provides the values of F for the
elements in the scope of a Semantic Entity Ek provides all
required information regarding Ek. In this case, each value
F can be considered as an element of a fuzzy relation on
S×S. We are therefore able to represent definitions using
fuzzy relations and operations among them using operations
between fuzzy relations. As an example, the definition A of
Figure 1 corresponds to

RA =

A B C a b
A
B
C
a
b













1 0 0 0 0
FBA 1 0 0 0

0 0 1 0 0
FaA 0 0 1 0
0 0 0 0 1













(6)

Note that definitions correspond to reflexive relations since
each Entity fully implies itself. If in addition we collect the
degrees µYi

of all Syntactic Entities within the scope of Ek

into a fuzzy set X of the form X = [0 . . . 0 µY1
. . . µYn

] we
may compute the Certainty µEk

using

Z = [0 . . . µEk
. . . 0 µY1

. . . µYn
] = X ◦REk

(7)

In this case, the composition “◦” is a generalization of the
well known sup -t composition (see [4] for example) and is
defined as (A◦B)(i, j) = U

k
(I(aik, bkj)) where the operators

U and I can be any t-conorm and t-norm respectively. By
using “◦” Certainty µEk

provided by (7) is equal to that of
Equation (3). Validity can be computed using (7) as well, by
setting µYi

= 1 for every Yi ∈ Y.

C. Partial Evaluation

Having limited resources, i.e. a limited complexity “budget”
for the identification of a Semantic Entity in a data set, one
must be able to choose a subset of the algorithms that are
used to define the Entity. These algorithms should provide the
best results for the identification, while keeping the complexity
below the limit. To this purpose, partial Certainty, Validity and
Complexity are defined in this section.

Assume that a subset A ⊆ At of the set of Syntactic
Entities At = SEk

∩Y participating in the detailed definition
Ek are used for the identification. Then, Partial Certainty of
the identification is defined as

µEk
(A)

4
= U

Yi∈A

(I(FYiEk
, µYi

)) (8)

and denotes the confidence we have acquired that Ek exists in
a data set by evaluating only the properties in A. By Equations
(3) and (8) and the monotonicity of the fuzzy union operators,
we conclude that if A ⊆ A

′, then µEk
(A) ≤ µEk

(A′) and
particularly µEk

(A) ≤ µEk
(At) ≡ µEk

.
Similarly, the Partial Validity is defined as

V(Ek/A)
4
= U

Yi∈A

(FYiEk
). (9)

This metric is particularly important because it provides a
means to measure the “quality” of the set A in the identifica-
tion of Ek and can be computed a priori, since it is independent
of the data set. If the Validity of A is high, we may trust the
answer that occurs by the evaluation of the properties in A.
Partial Validity is also bounded by the the total Validity of the
definition, V(Ek/A) ≤ V(Ek/At) ≡ V(Ek).

Finally, we define Partial Complexity

C(Ek/A)
4
=

∑

i∈A

c(ti) (10)

and since the complexity values c(ti) are nonnegative,
C(Ek/A) ≤ C(Ek).

D. Semantic Identification Design

Assume that a Complexity threshold CT is given for the
identification of a Semantic Entity using the detailed definition
Ek. From the power set 2SEk of SEk

, we select those subsets
Ai that satisfy the Complexity criterion

C(Ek/A
i
) ≤ CT (11)

The optimal subset A∗
T is the one that has the greatest Validity,

V(Ek/A∗
T ) = max(V(Ek/Ai)) (12)

Of course, setting the Complexity threshold CT ≥ C(Ek)
would lead to complete evaluation of the definition.

In a similar manner, we may design the identification in
terms of Validity if a Validity threshold VT is given, under
which no answer is accepted. Hence, we select the subsets Ai

of 2SEk that satisfy the Validity criterion

V(Ek/Ai) ≥ VT (13)

In this case, the optimal subset A
∗
T is the one that has the

minimum Complexity, i.e.

C(Ek/Ai) = min(C(Ek/Ai)) (14)

Note that a Validity threshold VT > V(Ek) cannot be
exceeded, so in this case no subset Ai exists.



One may argue that the problem of finding the optimal sub-
set is itself computationally inefficient, since for n Syntactic
Entities the number of subsets is 2n. However, by modeling
this problem as the so-called “Knapsack” [5] problem with
a nonlinear gain function (Validity) the problem is solved in
pseudo-polynomial time very efficiently. The analysis of the
algorithm that solves the optimal subset selection problem is
beyond the scope of this work and is the core subject of paper
[6].

Apart from the design in terms of Complexity or Validity,
one may choose to use variations, suitable for the needs of each
application. Examples include the use of fuzzy thresholds,
or the use of combined criteria (including both Validity and
Complexity).

IV. NON-DETAILED DEFINITIONS

The identification process and optimization have been ana-
lyzed so far for the case of detailed definitions, where there is a
direct relation between the Syntactic Entities and the Semantic
Entity that is defined. However, the Encyclopedia may contain
definitions of Semantic Entities in terms of other Semantic
Entities, i.e. non-detailed definitions. In this section, three
methods are presented that deal with non-detailed definitions
using three different approaches, useful for various application
scenarios.

A. Direct Substitution

In this case, a non-detailed definition is transformed into a
detailed one. By gradually substituting each Semantic Entity
participating in a definition we obtain a definition “tree” where
the leaf nodes of this tree are the Syntactic Entities partici-
pating in the definition, either directly or indirectly. Consider
again the example of Figure 1. The definition C is detailed,
while the Syntactic Entities participating in the definition B
are a (both directly and indirectly) and b (indirectly, through
C). In the direct substitution method the goal is to obtain
appropriate values F ′

aB and FbB so that B can be transformed
into a detailed definition Bd. For this purpose, we use fuzzy
intersection for the transition from b to B via C, consequently

F ′
bB = I(FbC , FCB). (15)

There exist two ways that a is related to B, directly with FaB

and through C, with I(FaC , FCB). Fuzzy union is used to
combine these values and calculate F ′

aB , hence

F ′
aB = U(FaB , I(FaC , FCB)). (16)

Note that fuzzy union is used whenever multiple paths exist
and at the junction of these paths. This means that in order to
find the relation between the Entity A and a, one would use
the detailed definition of B calculated above, and not apply
union at top level. Hence,

F ′
aA = U(FaA, I(F ′

bB , FBA)), (17)

F ′
bA = I(F ′

bB , FBA). (18)

All of the above can be rewritten in a mathematically
convenient form by using fuzzy relations. Consider the general
definition E = FEd1E/Ed1 + . . .+FEdmE/Edm +FY1E/Y1+
. . . + FYnE/Yn where Ed1, . . . , Edm are Semantic Entities
with detailed definitions. This definition can be represented
using a fuzzy relation RE , as stated in section III-B. We can
obtain a fuzzy relation R

c
E that provides the weights F for

all the Syntactic Entities participating in E either directly or
indirectly, i.e. it provides the values F for every element in
S

c
E = SEd1

∪ . . . ∪ SEdm
, by

R
c
E = (RE1

∪ . . . ∪REm
) ◦RE (19)

where “∪” is the standard union and “◦” is the composition
defined in section III-B. By applying this procedure recursively
(if any of the definitions Edi is not detailed), we obtain a
relation providing the weights for all Syntactic Entities and (7)
may be used for the computation of Certainty µE . In summary,
the direct substitution method uses

Z = X ◦ ((
⋃

i∈Sc

E
∩E

R
c
i ) ◦RE) (20)

where R
c
i are the “composite” relations for all non-detailed

definitions and the Certainty µE is included in Z.
While it is common to use the sup -t composition and the

transitive closure of a fuzzy relation R to find the degree of
relationship between the elements of R (in [7] for example,
this approach was used for semantic query expansion) this
section proposes a different method to this end. This is
because the standard union is not suitable for the design of
the identification, since for each subset Validity is determined
by the Syntactic Entity with the higher weight F , providing no
granularity. On the contrary, for any other fuzzy union operator
U and Fa > Fb, we have U(Fa, Fb) > Fa, i.e. the inclusion of
b, increases the Validity of the identification. The drawback of
this approach stems from the fact that U(a, a) > a in general,
so the transitive closure [7] is not the appropriate choice for the
generation of detailed definitions (because the weights already
provided would be modified). On the contrary, the procedure
presented above, yields the desired results.

B. Subcontractors

In the direct method only the information provided by the
Encyclopedia is used for the identification. However it is com-
mon for multimedia documents to be pre-annotated in real life
applications, meaning that information about certain Entities
may already exist and should be used. The subcontractor
method assumes that someone else has gone to the trouble
of identifying the Semantic Entities involved in a definition
(hence their Certainty is available in a document). We may
therefore consider these Semantic Entities as Syntactic ones,
since information about their existence in a document is
already available. Therefore a non-detailed definition may be
treated as a detailed one and the computational cost of the
evaluation of lower level Semantic Entities is zero.



The idea of the subcontractor actually applies to any
method. By knowing the Certainty µEk

of an Entity Ek we
may treat that Entity as a Syntactic one, even if no information
is available for other Semantic Entities participating in its
definition. The difference is that in Equation (7) X contains
Certainty values for Semantic Entities as well.

C. The Hybrid Method

The hybrid method differs from the direct and subcontracted
methods in that it doesn’t aim at providing detailed definitions
from non-detailed ones, but it is useful in the identification of
multiple Semantic Entities in a document. We assume that a
pool of algorithms exists, that can be used to evaluate the
corresponding Syntactic Entities. Evaluation of a Syntactic
Entity Yi yields a partial Certainty µEk

for all the Semantic
Entities where Yi ∈ SEk

. Additionally, each µEk
adds to the

partial Certainty of other Entities µEl
that use Ek (as in the

subcontractor approach) and so on.
Assume a Semantic Entity E described by lower level

Semantic Entities with detailed definitions. We calculate µE

using
Z = (

⋃

i∈SE ∩E

X ◦R
d
i ) ◦RE (21)

where R
d
i are relations corresponding to detailed definitions.

For Semantic Entities described by E, Z is used instead of X

and E is treated as a Syntactic Entity.
Hence by executing a set of algorithms in a document,

we obtain Certainty values for a large set of Entities. This
approach can be useful in the annotation of a document by
finding which Entities exist in it and up to what degree, con-
trary to the case when a single Semantic Entity is identified.
Note, however, that this approach is not equivalent to the direct
approach. More specifically, transformation of a definition
to a detailed one and evaluation of all Syntactic Entities
participating in that definition doesn’t yield the same Certainty
as the hybrid method that recursively computes the Certainty
for all the lower level Semantic Entities of the definition. This
happens because the distributivity property does not hold for
fuzzy unions and intersections in general. An exception to
this is the standard fuzzy union, although this operator is not
efficient to use with the identification design as mentioned in
section IV-A.

V. EXPERIMENTS

A. A Completely Useless but Rather Didactic Example

Mr. Butter loves butterflies, so he has installed a camera
in his garden and wishes to be notified whenever a butterfly
happens to be passing by. An expert provided a definition for
butterflies: They have a shape that matches a set of sketches,
their flight has a periodic up and down motion with frequency
within a particular range [f0, f1] and that they have a tendency
to approach and stop on flowers. Let the aggregated distance

of butterfly shape from a prototype sketch be denoted by d
and its velocity by v. On the other hand, flowers are identified
by their vivid color (Mr. Butter’s garden has no other vivid
colored objects) and also by their shape that should be close
to a prototype flower sketch; let df denote the distance of this
shape from the prototype. After reading section II-B of this
paper Mr. Butter organized the provided definitions as follows.

B = “Stop on Flower”/0.5 + “Shape”/0.8 + “Flight”/0.9
(22)

“Stop on Flower” = “Flower”/0.9 + (v close to 0)/0.8
(23)

“Shape” = (small d)/0.8 (24)

“Flight” = (f close to the range [f0, f1])/0.95 (25)

“Flower” = (vivid colors)/0.9 + (small df )/0.6 (26)

The Complexity values associated with the Syntactic Entities
of the definitions are given in table I.

Syntactic Complexity
Entity (MFLOPS)

v close to 0 200
small d 300

f close to the range [f0, f1] 400
vivid colors 100

small df 300
Total Complexity 1300

TABLE I

COMPLEXITY VALUES FOR THE SYNTACTIC ENTITIES OF B.

Some adjustments with the camera and the equipment in
general were made so the method was actually good at iden-
tifying butterflies during testing. However, when Mr. Butter
tried to use this method on his own rather old computer he
found that the method required more computational resources
than it could handle. By skipping section III-D he thought
that the ideas of section IV-B could simplify the process
if the subcontractor approach was used for the Semantic
Entity “Flower”, since this Entity can be identified once every
morning and be used for the rest of the day. The gain in
complexity was c(small df ) + c(vivid colors) = 400 and
Ctotal = 900. Nevertheless, the Complexity was still too high.
It was then that Mr. Butter decided to revisit section III-D and
apply the proposed design method.

Mr. Butter adopted the direct approach (section IV-A), so the
definition (22) was transformed into a detailed definition B ′.
As fuzzy intersection and union operators he used the algebraic
product and sum respectively (I(a, b) = ab, U(a, b) = a +
b − ab). The result was

B′ = (v close to 0)/0.4 + (small d)/0.64

+ (f close to the range [f0, f1])/0.855

+ “Flower”/0.45.

(27)

The total Validity and Complexity of the definition are
Vt = 0.98277 and Ct = 900. By setting a threshold



CT = 400 and designing in terms of Complexity, the re-
sulting Validity is V ∗ = 0.92025, that occurs by evaluating
(f close to the range [f0, f1]), and taking into account the Se-
mantic Entity “Flower” provided by the subcontractor method.
The Complexity of the identification is C = CT = 400 and
Mr. Butter is happy now.

This is a rather extreme case, where we assumed that the
Syntactic Entity (f close to the range [f0, f1]) is much more
important in the identification than the others, so the increase
in Validity by employing this Entity is high. Moreover, Validity
increases by the use of a subcontractor for the Entity “Flower”
that is precomputed once for the scene (and which is always
employed, since it has no Complexity cost). It is important
to notice that the design method’s results are useful only if
the values of the weights F correspond to the importance
of the Entities in the identification as well as the accuracy
and robustness of the algorithms employed to perform the
evaluation. If this is not the case, the Validity values obtained
do not correspond to the accuracy of the actual results:
High Validity essentially means that high Certainty will occur
during the identification if a butterfly actually exists and lower
whenever it doesn’t.

B. Evaluation Using Random Values

Seriously now, we may examine the value of the proposed
method by using detailed definitions with randomly distributed
values of Complexity and weights F . Employing only a
subset of the Syntactic Entities in the definitions leads to a
reduction in both Validity and Complexity. However, selecting
the optimal subset minimizes the Validity loss, while Com-
plexity satisfies the requirements posed by a threshold C. Two
definitions, consisting of 30 Syntactic Entities each, were used
and Figure 2 demonstrates the results of design in terms of
Complexity for Various thresholds. Complexities and weights
F have random values obtained from uniform distributions for
the first definition, while the second definition uses normally
distributed values. Note that for a threshold CT = 12 the
Validity is V ≈ 0.9 while the total Complexity of the definition
is Ct = 132 for the uniformly distributed values. Furthermore
this experiment along with similar experiments that have been
conducted show that the method is very efficient when dealing
with widely distributed values (their variance is high), contrary
to the case of distributions with similar values. This can be
justified by the fact that Syntactic Entities with similar values
of Complexity and weights F make the selection between
them unimportant, since they can be considered “equivalent”
under our scope.

VI. DISCUSSION

A general method for modeling the semantic identification
process has been presented. Each feature that is employed for
the identification is assigned a complexity value and a weight
that denotes its importance in the identification. This allows
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Fig. 2. Design in terms of Complexity.

the design of the identification taking into account possible
limitations in computational complexity or requirements on the
Validity of the identification. The major advantage of this work
is that this model is flexible enough to be used by semantic
identification techniques available in the relative literature.

Future plans include the extension of the Fuzzy Semantic
Encyclopedia so as to be able to use more complex and
expressive mathematical logics, such as description logics (see
[8] and [9]) and the evaluation of the method in dynamic, real
time environments, where the design of the identification is
constantly reevaluated during the process. Although in this
work we assume that the weights F are predefined in the
Encyclopedia, it is clearly a major issue to develop algorithms
that compute them, either automatically or semi-automatically,
by using appropriate training techniques.
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