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Abstract— Automatic objective monitoring of eating behav-
ior using inertial sensors is a research problem that has
received a lot of attention recently, mainly due to the mass
availability of IMUs and the evidence on the importance of
quantifying and monitoring eating patterns. In this paper we
propose a method for detecting food intake cycles during the
course of a meal using a commercially available wristband.
We first model micro-movements that are part of the intake
cycle and then use HMMs to model the sequences of micro-
movements leading to mouthfuls. Evaluation is carried out
on an annotated dataset of 8 subjects where the proposed
method achieves 0.78 precision and 0.77 recall. The evaluation
dataset is publicly available at http://mug.ee.auth.gr/
intake-cycle-detection/.

I. INTRODUCTION

Eating behavior is a key factor affecting the development
of obesity, a disease that has reached epidemic proportions
and is currently threatening 1.9 billion overweight and 600
million obese adults worldwide [1]. In particular, the analysis
of eating behavior during the course of a meal has been
associated with the total food intake and the overall obesity
risk. For example, analysis of eating rate deceleration during
the course of a meal has been correlated with disordered eat-
ing [2] while, on the other hand, restraining eating behavior
using feedback has been shown to have a significant impact
towards the treatment of obese children [3]. Such findings
indicate that there is a lot to be gained by detailed objective
measures of in-meal eating behaviour, both for individuals
who are already overweight or obese and for normal-BMI
people who wish to maintain a healthy lifestyle.

Identifying eating occurrences and the objective quantifi-
cation of eating behavior with the help of inertial sensors is
a challenge that has received significant research attention
during the past decade. In most cases, accelerometers or
gyroscopes are used in conjunction with other sensors to
measure eating-related indicators (e.g., [4]–[6]). There are,
however, several works which aim at measuring eating
behavior parameters using inertial sensors alone. In [7] the
authors explored the potential of using a set of inertial
sensors to identify isolated gestures associated with eating,
such as “knife cutting”, “spoon loading” and several others.
Results highlighted the potential of using inertial sensors for
measuring eating behavior.
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More recently, Dong et al. [8] proposed a bite detection
and counting system based on gyroscopes worn at the wrists.
The idea is to detect wrist rotations which precede bites in
order to count the number of bites during the course of a
meal, and correlate this information with energy intake.

A model of dependence between the different gestures
during a meal is presented in [9]. The authors use Hidden
Markov Models (HMM) combined with Gaussian Mixture
Models (GMM) to model each gesture as well as the
dependence between gestures. Although the method uses a
small number of gestures and relies on manually segmented
sequences, it shows the temporal dependence of gestures, as
well as the temporal structure of each gesture.

Motivated by the finding of [9], we propose to model
the food intake cycle as a sequence of micro-movements
associated with a single mouthful. Based on this model,
our method uses a commercially available wristband to
explicitly detect hand movements such as picking up the
food, or moving the food from the plate to the mouth,
using an array of SVM classifiers. It then uses the detected
movements in conjunction with discrete HMM models to
identify intake cycles and characterize eating behavior. The
method is described in detail in Section II.

Evaluation was carried out on a dataset of 8 meal sessions
performed by 8 subjects recorded at the Aristotle University
of Thessaloniki (Section III) and led to encouraging results
(Section IV). The dataset is publicly available at the Multi-
media Understanding Group website1.

II. PROPOSED APPROACH

A food intake cycle is defined as a period that typically
starts by manipulating a utensil for picking up food from the
plate. This period then continues with an upwards motion of
the hand towards the mouth area, progresses with a motion
that enables the placement of food inside the mouth and
finishes with a downwards motion of the hand away from
the mouth area. Of course, the previous definition of the
food intake cycle refers to an ideal case, while in a real life
scenario the intake cycle includes repetitions of hand motions
as well as times where no hand movement is exhibited
(or where the hand movements are not the ones mentioned
above).

The term micro-movement is used to describe a simple,
short duration motion of the hand, as measured by the
acceleration and gyroscope sensors. In the context of this
study, the term micro-movement refers to the fundamental
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TABLE I: Table listing all identified micro-movements

Micro-movement Description

Pick food Hand manipulates a fork to pick food from
the plate

Upwards Hand moves upwards, towards the mouth
area

Downwards Hand moves downwards, away from the
mouth area

Mouth Hand inserts food in mouth
No movement Hand exhibits no movement
Other movement Every other hand movement

periodic movements that are performed during a typical
meal session. Table I lists all micro-movements that were
identified, along with a short description.

The method presented at this paper aims at detecting intake
cycles. This is achieved by initially using a Support Vector
Machine to handle the recognition of the individual micro-
movements. Two discrete HMMs are then employed for
classifying the sequence of the recognized micro-movements
as food intake or not.

An overview of the proposed method is presented in Figure
1. The rest of this Section describes each processing step in
more detail.

A. Pre-processing and Feature Extraction

Since the accelerometer sensor captures both the accel-
eration caused due to the subject’s movements, as well as
the acceleration caused by the effect of the earth’s gravity
field, the first step is to remove the gravitational component.
For this purpose, we employed the algorithm proposed by
[10], allowing the usage of gyroscope data as a means of
transforming the accelerometer samples to the initial frame.
By assuming that the wristband is initially still, the grav-
itational effect can effectively be removed, by subtracting
the first accelerometer measurement. Prior to removing the
gravitational component, we smoothed the accelerometer and
gyroscope signals with a 5’th order median filter.

Following the pre-processing step, a sliding window ap-
proach was adopted for extracting features from the ac-
celerometer and gyroscope streams. The length Wl and the
step Ws of the rectangular sliding window W were selected
to be 0.2 and 0.1 seconds respectively. For each window a
number of features were extracted both from the frequency
and the time domain. In more detail, the set of extracted
features for each window include, for each axis of both the
accelerometer and the gyroscope: i) the zero crossing rate, ii)
the mean value, iii) the standard deviation, iv) the maximum
value, v) the minimum value, vi) the range of values, vii)
the variance, viii) the normalized energy and ix) the first l
Discrete Fourier Transform coefficients, where l = Wl

2 + 1.
Finally, for each sensor the SMA (simple moving average)
was calculated by 1

Wl

∑Wl

i=1 |x(i)| + |y(i)| + |z(i)|, where
x(i), y(i) and z(i) correspond to the i′th sample of the x,
y and z sensor streams in a given window.

B. Learning the Micro-movements

For the micro-movement recognition task, a multiclass
Support Vector Machine classification scheme with one-
versus-one classifiers was adopted. In addition, the radial
basis function (RBF) was selected as the kernel of choice.

Given the start and end moments provided by annotating
the video sequences, the features belonging to each micro-
movement except “other movement” were selected for SVM
training. Essentially, the five classes of interest were the first
five micro-movements of Table I, resulting in ten one-versus-
one SVMs. The reason behind the exclusion of the “other
movement” class is the large inner-class variance, since it
was used to describe every micro-movement not related with
the classes of interest and thus, very difficult to model.

Moreover, it was noticed that the “mouth” and “down-
wards” classes contained significantly less samples compared
to the “pick food” class. This was caused due to the first two
movements being much shorter in duration than the latter. To
this end, each class was proportionally weighted based on it’s
prior probability. Finally, each feature was linearly scaled in
[0, 1].

C. Modeling time evolution

Two discrete 5-state Hidden Markov Models (HMMs)
were trained to determine whether or not a sequence of
micro-movements constitutes a food intake cycle. The first
HMM (HMMp) was trained using positive sequences, i.e.
sequences that correspond to a valid food intake cycle, while
on the other hand the second HMM (HMMn) was trained
using negative sequences, i.e. sequences not corresponding
to a valid cycle. By using the true labels corresponding in
each window W , the ideal food intake cycles were computed
as follows. By considering the sequence of SVM labels as
symbols, a sequence of symbols was considered as an ideal
food intake cycle if it begun with the corresponding “pick
food” symbol and ended with a “downwards” symbol. In
practice, the start and end points of a valid sequence were
the positions of the first “pick food” symbol in sequence of
“pick food” symbols and the position of last “downwards”
symbol in a sequence of “downwards” symbols.

The Jaccard Index (Eq. 1) was employed in order to enrich
the collection of positive sequences as well as generating
realistic negative sequences.

J(A,B) =
|A ∩B|
|A ∪B|

(1)

More specifically, given the sequence of labels of a com-
plete meal session of a subject with known start and end posi-
tions of the positive sequences, two random integer numbers
were generated. The first random number corresponded to
the start position of a candidate sequence, and the second
number corresponded to the length of the sequence. The
Jaccard Index was calculated against all positive sequences
of the session, if the result versus a single positive sequence
was greater or equal than Tu then the candidate sequence
was added to the positive sequences pool. On the other hand,
if the Jaccard Index was lower than Tl, then the candidate
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Fig. 1: Overview of the proposed method

sequence was added to the negative sequences pool. In any
other case, the candidate sequence was simply discarded.
As a result of the previous procedure, 200 positive and 200
negative sequences were generated for each subject.

Finally, all samples belonging in the positive sequences
pool, were used for prediction for the given trained SVM
models. It should be emphasized that sequences both in the
positive as well as the negative pool contain samples belong-
ing in the “other movement” class, that did not participate
in the SVM training procedure. The SVM predictions of the
samples corresponding to the positive sequences were used
as the training sequences for HMMp. HMMn was also
trained in a similar fashion.

D. Detection
Given the sequence of SVM predictions of a meal, food

intake cycles can be detected by adopting a sliding win-
dow approach and the two HMMs. Given this approach, a
rectangular window W ′ traverses the predictions sequence
with a length W ′l = 3 seconds and a step W ′s = 0.2
seconds. For each prediction sub-sequence in the series,
two log likelihoods λp and λn are calculated. The first
likelihood, λp, is a result of modeling the sub-sequence
selected by W ′ using HMMp, whereas the latter by using
HMMn. Both λp and λn are normalized by dividing with
W ′l . Consequently, a new series diff , is created by applying
diff(i) = λp(i)− λn(i), where i is the position of window
W ′ on the given predictions series. Eq. 2, was used to filter
the diff series, by discarding samples where the difference
was below a certain threshold Td.

diff ′(i) =

{
diff(i), if diff(i) ≥ Td
0, otherwise

(2)

Subsequently, a local maximum search was performed in
the filtered diff ′ series. The minimum distance between
two successive peaks was set at 3 seconds. The timestamp
associated with each peak, corresponds to the middle of
the respective W ′ responsible for producing the difference
diff(i). The resulting peaks correspond to the detected food
intake cycles.

III. DATASET

A. Data Collection Protocol
For the purposes of this study, a total of 8 subjects

were recorded while eating their launch at the university’s

cafeteria. The total duration of the recording sums up to 109
minutes, with a mean duration of 13.6 minutes.

The wristband used for the study was an off-the-shelf
Microsoft Band 2, containing a triaxial accelerometer pro-
viding measurements in g units and gyroscope providing
measurements in degrees per second (◦/sec). Moreover, an
Android application was developed for the purpose of acting
as an interface between the wristband’s sensors and a mobile
phone. The wristband was able to acquire and transmit
accelerometer and gyroscope data at approximately 62 Hz.
In order to handle inconsistencies in the sampling rate, we
estimated the sampling frequency of each sensor, followed up
by linear interpolation and then re-sampling the interpolated
series to the target sampling frequency of 100 Hz.

Furthermore, a Go Pro Hero 5 action camera was also used
for generating ground truth annotations. It was mounted on
a short tripod (approximately 23 cm height) placed on top
of the table, while facing the subject’s upper torso and food
tray.

All participants were free to select the food type of their
choice. A typical recorded meal consists of a starter, a
salad and a main course. Each participant was asked to
wear the wristband encapsulating the sensors to the hand
responsible for handling the fork. In order to synchronize
the accelerometer and gyroscope streams with the camera
feed, prior to starting his meal the subject was asked to clap
his hands. This procedure enabled synchronization of the
two streams with different timestamps, since the quick hand
motion required for clapping exhibits an easily identifiable
sharp peak in the acceleration signal. No other instructions
were given to the subjects on how to eat their meals. As a
result, the participants were free to engage in conversations
with other individuals seated near them, use their cellphones
and perform any other non meal-related activities. After the
subject finished their meal, they were asked to perform a
second clap marking the end of the collection procedure as
well as verifying the initial synchronization offset.

B. Data Annotation

For all video recordings, the start and end points of all
six micro-movements of interest were manually labeled. The
annotation process was performed in such a way that the start
and end times of each micro-movement span the whole meal
session, without overlapping each other. More specifically, at
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Fig. 2: Precision-recall curve, for the method presented at
[8] and the proposed approach

each time t each sensor generated sample s(t) is associated
by a specific label.

IV. EXPERIMENTS & RESULTS

Both the classifiers for micro-movements as well as for the
food intake cycles were trained and tested using the Leave
One Subject Out (LOSO) cross validation scheme. Meaning
that for each subject j in the dataset, one SVM model SVM j

and one pair of HMM j
p and HMM j

n were produced. In
more detail, all data samples from all subjects, belonging in
the “other movement” class were excluded from the SVM
training process. However, every occurrence of the “other
movement” class existed in the test sets. As a consequence,
for each subject, the HMMs were trained by using the SVM
output (i.e. the SVM interpretation of the samples belonging
in the “other movement” class).

Moreover, the SVM parameters were set to γ = 0.1 and
C = 100 for all subjects, after experimenting with a small
subset of the micro-movement data. In a similar fashion,
thresholds Tu and Tl were set to 0.8 and 0.6 respectively.
The threshold parameter Td used in Eq. 2 was selected by
picking the one that achieved the highest F1 score and was
set to 0.016, however the complete precision-recall curve is
also provided (Figure 2).

Given, tks and tke , as the true start and end points of the k’th
food intake cycle respectively and tlp as the timestamp of the
l’th detected peak resulting by the detection methodology, we
were able to evaluate the performance of our approach by
using the following evaluation scheme.

If for l’th detected peak, the inequality tks ≤ tlp ≤ tke
holds, then it counts as a true positive. However, every other
occurrence of a peak in the same food intake cycle k, counts
as a false positive. Moreover, if for a specific detected peak
the above inequality doesn’t hold for any food intake cycles
of the session, then it counts as a false positive as well.
Finally, if for a specific food intake cycle there is no detected
peak that can fulfill the inequality above, then it counts as a
false negative.

Given this evaluation scheme, the performance of the
proposed method is measured by calculating the precision
and recall metrics. For comparative evaluation purposes, the
method proposed in [8] was also implemented and was

TABLE II: Evaluation results

Method TP FP FN Precision Recall

Proposed approach 308 109 115 0.7806 0.7713
Dong et al. 395 482 108 0.4504 0.7853

evaluated on the same dataset. Figure 2 depicts the relation
between the precision and recall pair for both methods, given
different threshold values. Furthermore, the evaluation results
are listed in detail in Table II. For the method of Dong et
al. the threshold was selected as described in [8].

Based on these results, the proposed method of explicitly
modeling the micro-movements during meal cycles leads
to satisfactory results regarding the automatic and objective
quantification of eating behavior.

V. CONCLUSIONS

We have presented an approach for the detection of intake
cycles during the course of a meal using a commercially
available IMU. Results indicate that the combination of
SVM-based micro-movement detectors with discrete HMMs
leads to effective detection of intake cycles. Evaluation on
an annotated dataset of 8 meals shows that the proposed
method achieves high effectiveness and improves over a
known method proposed in the bibliography.
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