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Abstract. Unobtrusive analysis of eating behavior based on Inertial
Measurement Unit (IMU) sensors (e.g. accelerometer) is a topic that has
attracted the interest of both the industry and the research community
over the past years. This work presents a method for detecting food
intake moments that occur during a meal session using the accelerom-
eter and gyroscope signals of an off-the-shelf smartwatch. We propose
a two step approach. First, we model the hand micro-movements that
take place while eating using an array of binary Support Vector Ma-
chines (SVMs); then the detection of intake moments is achieved by
processing the sequence of SVM score vectors by a Long Short Term
Memory (LSTM) network. Evaluation is performed on a publicly avail-
able dataset with 10 subjects, where the proposed method outperforms
similar approaches by achieving an F1 score of 0.892.
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1 Introduction

Recent reportsﬂ from the World Health Organization (WHO) point out the global
epidemic status that obesity has reached by doubling the affected population
worldwide since 1980. In particular, overweight and obesity are two of the most
prevalent preventable causes of death, alongside smoking tobacco and sexually
transmitted diseases, and are responsible for over 2.5 million deaths per annum
since 2001 [II]. Thus, the ability to unobtrusively monitor eating behavior plays
a key role in the study and treatment of obesity.

Several devices have been introduced specifically for measuring meal eating
behavior, e.g. by weight scale [§] or based on sound [9]. In this paper, we are
interested in detecting eating moments during the course of a meal using gen-
eral purpose IMU sensors. This enables us to automatically measure in-meal
eating behavior in terms of number of bites, bite frequency and bite frequency
acceleration or deceleration, thus approximating the food intake curve of [g].

! http://who.int/mediacentre/factsheets/fs311/en/
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Several approaches use multiple sensors to achieve high detection accuracy. In
particular, the work of [I] involve the usage of multiple body-mounted accelerom-
eters with the goal of detecting eating related gestures, whereas the authors of
[6] combine a number of audio and motion sensors in order to detect bites and
estimate intake weight. The main drawback of these methods, however, is the
low usability compared to using a single, commercially available device.

Less obtrusive approaches exist, that employ the IMU sensors of a single
smartwatch. Specifically, the authors of [I2] propose the dissection of a feeding
gesture into two sub-feeding movements, namely food-to-mouth and back-to-
rest. Following the authors’ proposed gesture recognition scheme, a clustering
approach is used to detect the final eating moments, resulting in 0.757 F1 score
on a laboratory controlled dataset. The work of [I0] makes use of the sequen-
tial dependency between a small number of gestures leading to a bite of food.
Moreover, the authors propose the usage of Hidden Markov Models (HMM) to
capture the temporal evolution of eating. The results show the high performance
of the proposed approach in manually segmented sequences in a large dataset.
However, no results on non-segmented sequences are presented. A gyroscope-
based approach is introduced in [2]. The authors make use of a characteristic
wrist roll pattern that is exhibited during a meal to detect biting moments.

In our previous work [4], we showed how classification of hand movements
into five meal-related gestures, followed by two discrete HMMSs, can be used to
characterize a food intake cycle. In this paper, we improve on this approach, by
modeling hand micro-movements as an SVM score vector and by subsequently
using an LSTM network to classify each sequence as an intake or non-intake
cycle. Experimental results on our publicly available Food Intake C’ycldﬂ (FIC)
dataset show the effectiveness of this method.

Following the introduction, Section [2]introduces the terminology and presents
the steps of the method towards the detection of food intake cycles. Information
about the dataset is presented in Section [3] whereas Section [] presents the
conducted experiments and their results. Finally, Section [5] concludes the paper.

2 Proposed approach

The work presented in this paper aims at identifying food intake cycles dur-
ing a meal session. Each food intake cycle consists of a series of hand micro-
movements. The relation between meal session, food intake cycle and micro-
movement is depicted in Figure

In its ideal form, a food intake cycle starts by manipulating a utensil to pick
up food from a plate, continues with an upwards movement of the hand operating
the utensil towards the mouth, followed by inserting the food in the mouth and
concluding with a downwards motion of the hand away from the mouth. However,
in real meals we observe repetitions of certain hand movements, unrecognized
hand movements, or no hand movement at all. In the same context, the term

2 https://mug.ce.auth.gr/intake-cycle-detection/
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micro-movement is used to describe a hand movement of limited duration that
is related with the food intake cycle. A typical micro-movement example is the
upwards movement of the hand operating the utensil from the plate towards the
mouth. The micro-movements that we used in this study originate from the FIC
dataset and are presented in Table

Table 1. Table listing the selected micro-movements

Micro-movement Description

Pick food Hand manipulates a utensil to pick food from a plate
Upwards Hand moves upwards, towards the mouth area
Downwards Hand moves downwards, away from the mouth area
Mouth Hand inserts food in mouth

No movement Hand exhibits no movement

Other movement Every other hand movement

The proposed method uses the acceleration and gyroscope signals of a smart-
watch with the purpose of detecting food intake moments within a meal session.
An array of binary (one-versus-one) SVMs is used to represent the initial signals
as micro-movement score vectors; whereas an LSTM network is used to classify
sequences of micro-movement score vectors as intake or non-intake cycles. An
overview of the proposed system architecture is presented in Figure [2]

2.1 Data pre-processing

Initially, the synchronized 3D accelerometer (ag[nl, ay[n], a.[n]) and gyroscope
(9z[n], gy[n], g=[n]) sensor streams of a meal session are individually smoothed
by a 5" order median filter. Furthermore, since the accelerometer sensor cap-
tures both the acceleration caused by the hand’s movement as well as the the
acceleration due to the earth’s gravitational field, the next step is to remove the
gravity from the acceleration signal. To this end, we use the method proposed
by [5]. More specifically, the gyroscope samples are used to estimate the rotation
of the smartwatch with respect to a reference frame. We use the first sample as
the reference frame (i.e. the position of the smartwatch when recording starts).
Then, by assuming that the smartwatch is initially still, gravity can be removed
by subtracting the first acceleration sample from the rotated sequence.

2.2 Feature extraction

Given the pre-processed accelerometer and gyroscope streams feature extrac-
tion is performed by extracting frames of length w; and step ws correspond-
ing to 0.2 and 0.1 seconds respectively. Let wflm be the i-th extracted frame
from a,[n] channel of the accelerometer signal. For each wflz a number of both
time and frequency domain features are calculated, including i) the number of
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Fig. 1. Segmentation of a meal session (solid line) into intake cycles (shaded area) and
micro-movements (dotted line).

zero crossings, ii) the mean, iii) the standard deviation, iv) the variance, v) the
maximum value and minimum value, vi) the range of values, vii) the normal-
ized energy and viii) the first % 4 1 Discrete Fourier Transform coefficients.
These features are also extracted for the rest of the accelerometer and gyro-
scope channels. Furthermore, the simple moving average is also calculated by
SMA: = w% ;’:,gk lw 7] + |w;y [7]] + |wk_[4] for the acceleration stream and
in a similar manner for the gyroscope. The result of feature extraction is the
representation of the a;[n], ay[n], a.[n], gz[n], gy[n] and g.[n] time series as a
series of L-dimensional feature vectors f;.

2.3 Modeling the micro-movements

From the list of micro-movements of Table [I} we observed that class O exhibits
high inner class variance, since it is used to represent every hand movement
other than P, U, D, M and N. As a result, all extracted features belonging in the
O class are excluded from the learning procedure. The micro-movement learn-
ing process is achieved by employing an array of one-versus-one SVM classifiers
with the Radial Basis Function (RBF) kernel. Given the features belonging in
the five classes of interest, a total of ten one-versus-one classifiers are trained.
In addition, since some micro-movements are inherently longer in duration than
others (e.g. P and N) all classes are weighted according to their prior probabili-
ties. Finally, prior to training, all features are linearly scaled in [0, 1]. Given the
trained SVM models, each feature f; extracted as in Section [2.2] is converted
into a 10-dimensional vector s; composed of the pair-wise prediction scores of
the 10 one-versus-one SVM classifiers.

2.4 Learning the food intake sequences

We designed an LSTM network with the purpose of classifying sequences of s; as
intake or non-intake cycles. The LSTM network is an extension of the Recurrent
Neural Network (RNN) specifically designed to solve the long term dependency
and vanishing gradient problems, thus giving it the ability to effectively model
large intra-dependent sequences such as micro-movement sequences. In contrast
with Markov models where the current state depends solely on the previous state
in time, LSTM networks use a combination of input, output and forget gates
to retain information over a long period; thus, model more efficiently intake
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Fig. 2. Overview of the proposed system.

sequences that differ greatly from the ideal intake sequence due to the insertion of
non intake-related micro-movements between intake-related micro-movements.

The proposed network’s architecture consists of two consecutive LSTM layers
with 128 hidden cells each, followed by a fully connected output layer with a
single neuron. For the activation function of the recurrent steps we used the
hard sigmoid defined as o(z) = max(0, min(1,2 0.2 4 0.5)), while for the output
layer we used the sigmoid function. In a compact notation, the network can be
written as L(128) — L(128) — D(1), where L(k;) represents an LSTM layer with
k1 hidden cells and D(kq) a fully connected layer with ko neurons. The reason
for using two LSTM layers stems from the work of Karpathy et al. [3], where
the authors have shown that using a depth of at least two recurrent layers is
beneficial when learning sequences.

Both intake and non-intake sequences are introduced to the network during
training. Given the true label corresponding to each s;, a sequence of s;,7 =
1,2, ..., n; is considered an intake cycle if it starts with P (the first P in a
sequence of P labels), ends with D (the last D in a sequence of D labels) and
contains at least an M micro-movement. On the other hand, the remaining se-
quences that appear between consecutive intake cycles, are considered as non-
intake cycles. We then represent each intake and non-intake sequence by their
appropriate n; x 10 SVM score matrix. Since the input sequence of each LSTM
layer is required to have a constant length, each sequence was pre-padded with
zeros to a size n’ x 10, where n’ = max{n; : j = 1,2,3...}. Thus, the input is
long enough to contain every intake or non-intake sequence in the corpus. We
used binary cross-entropy loss with the RMSprop optimizer (with 1073 learning
rate) that has demonstrated high effectiveness in a recurrent network topology
[7]. Finally, the network is trained using an batch size M equal to 32 for 5 epochs.

2.5 Food intake cycle detection

Given the trained LSTM network and a sequence of s; that represents a meal
session, intake cycle detection is performed by extracting 3 second frames from
the sequence of s; with a step of 0.2 seconds. The extracted frames are then
pre-padded with zeros to the target size n’ x 10 and given as input to the LSTM
network. The network output d[m] (i.e. the output of the sigmoid function)
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Table 2. Details of the exhibited micro-movements in the food intake cycle dataset

Label Instances Total duration (sec) Mean (+ std) duration (sec)

P 727 1613.43 2.21 (+ 1.71)
U 700 678.28 0.96 (+ 0.58)
D 694 518.37 0.74 (£ 0.57)
M 695 311.96 0.44 (& 0.17)
N 161 965.67 5.99 (£ 5.71)
0 742 3837.92 5.17 (& 7.42)

represents the normalized probability that an input frame is an intake cycle.
Subsequently, by replacing with zeros the elements of the d[m] series that are
lower than a threshold Ty, the filtered series d'[m] is created. Finally, food intake
cycles are detected by performing a local maximum search in d'[m], with the
minimum distance between two successive peaks set to 3 seconds. In particular,
the timestamp corresponding to each local maximum (i.e. intake cycle) is the
timestamp of the middle of the frame that produced the local maximum.

3 Dataset

In this study we used our publicly available FIC dataset. The FIC dataset con-
sists of recordings from 10 subjects performing one meal session each, with an av-
erage duration of 13.2 minutes, in the restaurant of Aristotle University of Thes-
saloniki. The accelerometer and gyroscope streams originate from the Microsoft
Band 2 smartwatch and are provided at a sample rate of approximately 62 H z.
The ground truth is provided at a micro-movement level based on analysis of
video sequences captured during each subject’s meal session. No specific instruc-
tions were given to the participating subjects other than clapping their hands
once in the beginning and once in the end of the session for video/smartwatch
synchronization purposes. Thus, the participants were able to engage in activi-
ties such as talking to other individuals in their proximity, during the recording.
Table [2] provides additional information regarding the appearances of micro-
movements in the dataset. Additionally, the average food intake cycle duration
(from P to D) and the average distance between two consecutive food intakes
were 5.39 (+£3.86) and 11.22 (£8.79) seconds, respectively.

4 Experiments & results

Given the true start and end moments of the i-th food intake cycle, ¢{ and
t! respectively, as well as ), the moment of the j-th detected intake cycle in
the same meal session, performance metrics were calculated by the following
evaluation scheme. If for a given true intake cycle i, ¢, is outside [, t] for any

detected intake cycle j, then it counted as a false negative. Otherwise it counted
as a true positive. However, every other occurrence of detected intake cycle in
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Fig. 3. Precision recall curves for the proposed approach (blue dash-dot line), the
approach by [4] (red dash line) and by [2] (black dotted line).

the same [t{,t!] interval counted as a false positive. Finally, if a detected intake
cycle didn’t belong in [t{,ti] for any i, then it also counted as a false positive.

We used Leave One Subject Out (LOSO) cross validation for both training
steps of the pipeline. As a result, for the evaluation of a single subject in the
corpus, we trained ten SVM arrays, and one LSTM network. Since the LSTM
is trained in a stochastic fashion, we repeated the LSTM training process for
ten times, resulting in a total of 100 SVM arrays and 100 LSTM networks for
the entire corpus. Experimentation with a small subset of the corpus led us to
the selection of the C' and v parameters of the SVM to be equal to 100 and 0.1
respectively. Similarly, the threshold parameter T; was set to 0.89 by picking the
value that achieved the highest F'1 score.

We used precision and recall for evaluation. The approaches of [2] and [4] were
also implemented and evaluated against the same dataset. Parameter selection
for those approaches was performed according to the authors’ suggestions. Figure
[3] depicts the precision-recall curves for all approaches, while Table [3] provides
numerical results for the top F1 score. The decimals in the TP and FN columns
arise from the averaging over the ten LSTM training repetitions.

5 Conclusions

We presented a method for detecting food intake cycles during a meal, using
an off-the-shelf smartwatch. Results on a 10-subject publicly available corpus
indicate that the combination of multiple micro-movement SVMs and an LSTM
network for score sequence classification is highly effective and outperforms sim-
ilar approaches found in the literature.

Acknowledgments. The work leading to these results has received funding
from the European Community’s Health, demographic change and well-being
Programme under Grant Agreement No. 727688 (http://bigoprogram.eu),


(http://bigoprogram.eu)

8

K. Kyritsis, C. Diou and A. Delopoulos

Table 3. Evaluation results.

Method TP FP FN Prec Rec F1

Proposed approach 623.7 89 60.3  0.875 0.911 0.892
Approach by [4] 603 193 81 0.757 0.881 0.814
Approach by [2] 508 683 176 0.426 0.742 0.541

01/12/2016 - 30/11/2020. We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Tesla K40 GPU used for this research.
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