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This paper presents a novel approach to training classifiers for concept detection using tags and a variant
of Support Vector Machines that enables the usage of training weights per sample. Combined with an ap-
propriate tag weighting mechanism, more relevant samples play a more important role in the calibration of
the final concept-detector model. We propose a complete, automated framework that (i) calculates relevance
scores for each image-concept pair based on image tags, (ii) transforms the scores into relevance probabil-
ities and automatically annotates each image according to this probability, (iii) transforms either the rele-
vance scores or the probabilities into appropriate training weights and finally, (iv) incorporates the training
weights and the visual features into a Fuzzy Support Vector Machine classifier to build the concept-detector
model. The framework can be applied to online public collections, by gathering a large pool of diverse im-
ages, and using the calculated probability to select a training set and the associated training weights. To
evaluate our argument, we experiment on two large annotated datasets. Experiments highlight the retrieval
effectiveness of the proposed approach. Furthermore, experiments with various levels of annotation error
show that using weights derived from tags significantly increases the robustness of the resulting concept
detectors.
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1. INTRODUCTION
Concept-based image retrieval aims at enabling indexing and subsequent retrieval of
images based on concepts that are automatically detected from the visual content of
images, as well as from any accompanying metadata [Zhang and Rui 2013]. Exam-
ples of concepts include image scene elements (“sky”, “sea”), actions (“person running”,
“smiling face”) or objects (“car”, “flower”). The use of concepts allows textual queries on
non-annotated image collections.

Indexing of images using concepts requires the mapping of low-level features that
are extracted from visual data to high-level features (concepts) that are directly per-
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Fig. 1: Concept detection on an image. The image is visually processed and a feature
vector is extracted. A concept detector algorithm uses the image feature vector and a
trained concept detector model to calculate a score that indicates the detector estima-
tion of concept relevance for the image.

ceived by the searchers. This is typically achieved with the processing pipeline depicted
in Figure 1 that ranks images with respect to each concept.

Several types of low-level features have been proposed in the bibliography [Snoek
and Worring 2009] with the “bag of visual words” approach applied on local key-point
descriptors [van de Sande et al. 2008] and, more recently, VLAD and Fisher vectors
[Habibian and Snoek 2014], achieving remarkable results. For the concept detection
stage an array of binary classifiers is used, one for each concept, that produce one de-
tection score per concept for each input feature vector. Typically, concept detectors rely
on Support Vector Machines (SVM) and are built via a supervised training procedure:
a set of training images, labelled on whether they depict the concept (positive samples)
or not (negative samples) are used to “train” the concept detector model that is then
used for image ranking. Thus, concept-specific non-antagonistic detector models are
produced, and then deployed in image indexing and retrieval.

Effective concept detector training requires a large number of both positive and neg-
ative examples. In addition, the diversity of images and the accuracy of labelling are
important factors that affect the performance of the detector model. Robust training
data can result from manual image labelling, although even for manually generated
data different annotators may not agree (e.g. in [Nowak and Rüger 2010] an aver-
age of 79, 6% inter-annotator agreement is reported per concept). In any case, manual
labelling is a laborious task, non-economic both in financial resources and time, espe-
cially if maintenance and update requirements are taken into account. For example,
enabling retrieval on new concepts requires new training samples. Furthermore, con-
cept models can be domain or application specific, and thus require different training
samples for each domain or application. Constantly or periodically updated models also
require a stream of new training data. Finally, in order to achieve high performance
on the detection procedure, a large volume of training samples is required.

In order to overcome these problems, several approaches have been proposed for
automatic or semi-automatic generation of concept training sets [Wang et al. 2007].
These include active and semi-supervised learning, use of click-through data, and use
of accompanying textual information. Active learning [Wang and Hua 2011] involves a
set of repeated training cycles. At the beginning of each cycle (or loop), some feedback
from a user is required, and is used in the following processing steps. Sufficient number
of loops can produce satisfying results, at the cost of the higher involvement of the user
in the annotation process. Click-through data approaches [Tsikrika et al. 2009; 2010]
exploit information provided implicitly by the user to assess the relevance of images
to concepts for detector training. Thus, the user provides useful information without
actively participating in training set generation. Click-through data, however, is only
available to search engines that are already being used, while no click-through data
becomes publicly available.
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Complementary to these training set generation approaches is the use of tags [Man-
del et al. 2011; Tang et al. 2013]. The term tag or user tag refers to a word or a short
phrase that users have assigned to images hosted in publicly available community
repositories [Datta et al. 2005] (such as Flickr1 or Picasa2). Tags however are not
strictly related to concepts. Concepts are always specific, and may required multiple
words, or even complete sentences, to be properly defined. Tags, on the other hand, are
usually single words, often ambiguous. Thus, inferring a concept form a tag (or even a
set of tags) is not trivial.

Users continuously upload new content, and also provide tags for the uploaded im-
ages. It has been noted that users do tend to annotate images, mainly according to
their content [Sigurbjörnsson and Van Zwol 2008]. Furthermore, these repositories
support a search functionality, where users provide textual queries and the system
responds with lists of images with relevant tags. Search using only the concept name
as a query is usually not sufficient for collecting training images, however, since re-
sults are usually small in quantity, and quite often lack the visual diversity required
to adequately describe the concept. A more involved method is therefore preferred for
exploring image repositories to harvest useful training material.

In addition, user tags are not always reliable. There exist tags that are related to
the image context and not to the directly observable content. Examples include tags
that might be capturing device metadata, descriptions of personal feelings or thoughts
of the user who assigned them, non existent words, ambiguity and even completely ir-
relevant or misleading information. In addition, tag descriptions are incomplete, since
many of the tags that could describe the image content are missing. All these factors
introduce errors in the training set that lead to reduced effectiveness of concept detec-
tors that are produced on the basis of the selected training samples.

Works that rely on online collections for training set generation use various ways to
to cope with erroneous tags and increase concept detector resilience to noise. Cluster-
ing methods for tags are sometimes used, and concept spaces are created, while other
approaches build cross modal spaces that combine both textual and visual information
[Yang et al. 2012]. Such methods are summarised in the review work of [Rafiee et al.
2010]. Another major issue for such approaches is the un-tagged image content. As
already mentioned, users assign tags based on their judgment, and usually leave out
a lot of information they consider irrelevant. In all these cases however, all training
samples are equally treated. Assigned labels are binary and crisp, and once their val-
ues are decided, images are considered as positive or negative samples with respect to
each specific concept.

This work introduces an approach for quantifying and handling label relevance, as
well as improving concept detector effectiveness under the presence of label noise.
More specifically, we propose an approach for collecting candidate training images
from a community repository and the use of a significantly improved variant of the
algorithm presented in [Tsirelis and Delopoulos 2011] to assess concept relevance for
each image. Subsequently, a new method is presented for transforming the relevance
scores into probabilities that are used for automatic image labelling. Once the auto-
matic label assignment based on these probability estimations has been performed,
either of relevance scores or probabilities can be used to introduce confidence weights
to each training image. These weights represent a level of certainty for the individual
label assignment. This information is taken into account during the concept detec-
tor training by the Fuzzy SVM. Experimental results show that models created with

1https://www.flickr.com
2http://www.picasa.com
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Fuzzy SVM lead to increased concept detector effectiveness, compared to the original
SVM that uses crisp label assignment.

From a user perspective, the proposed work-flow is entirely automated. The only
user input required is a set of words, or concept terms, that define the concept; three
to six words are usually sufficient to unambiguously define the concept. The output is
the concept detector model.

The rest of the paper is organised as follows. Related work is discussed in Section
2. Section 3 presents the proposed approach for weighted training, and the method for
producing such training weights. In Section 3.3 we describe the automated framework
that implements the proposed method. Section 4 presents various experiments demon-
strating improved performance both for the novel tag algorithm, and for the Fuzzy
SVMs over conventional ones. Finally, Section 5 summarises the presented work and
concludes the paper.

2. RELATED WORK
In this section we identify previous research in two different areas that are related to
the work of this paper. We first review the use of Fuzzy SVM [Lin and Wang 2002] for
classification, focusing on multimedia retrieval applications, and then present works
that use publicly available images along with their user tags to automatically generate
training sets and build concept detection models.

The Fuzzy SVM classifier has been used in various works. In [Min and Cheng 2009],
a membership function is constructed based on the Euclidean visual distance of im-
ages of the training set, and is used in a Fuzzy SVM. The Fuzzy SVM is incorporated
in a semi-supervised architecture that requires manually labelled images, and relies
on user feedback to balance the fuzzy membership of each image. In contrast, our work
requires no manual labelling, and training weights are calculated from user tags in-
stead of internal properties of the dataset.

A combination of several Fuzzy SVMs was used in [Rao et al. 2006] to create a system
that simulates user feedback in the form of predefined levels of relevance between im-
ages and concepts. A bagging system of Fuzzy SVMs is used to create training weights,
which are subsequently used in a final Fuzzy SVM. However, such fuzzy training sam-
ples were only partially used (about 20%). Similarly in [Wu and Yap 2008], a relevance
feedback method is used to assign soft labels on the output of a first Fuzzy SVM. A
membership function is constructed as a product of concept relevance, based on the
output of this Fuzzy SVM, and a visual distance ratio from cluster centroids, that have
been calculated in an initialisation step using k-NN. The authors of [Lin and Wang
2004] used Fuzzy SVMs with two different strategies (based on kernel alignment and
k-NN) for estimating sample fuzziness. Two thresholds are used, an upper thresh-
old for separating completely valid samples and a bottom threshold for noisy ones.
Samples lying between those two thresholds are treated as noise with probability val-
ues. However, thresholds and other parameters require exhaustive trial and error. Our
work differentiates significantly by (a) automatically calculating training weights and
labels, and (b) calculating these parametres using external information (tags) of the
dataset, instead of features.

A new type of SVM, the Power SVM (PSVM) is introduced in the work of [Zhang and
Ye 2009] that produced promising results. The main difference of PSVM with Fuzzy
SVM is that the sample weights are used in the constraints of Equation (1) (instead of
the objective function). Weight values of training images are calculated using the out-
put of multiple SVMs. Each training sample is characterised by different importance
in the training procedure.

Some of the approaches presented above compute the training weights based on the
feature vectors of the training set. These methods therefore assume that the training
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labels are correct, however there is uncertainty associated with the feature representa-
tion (internal uncertainty). Other methods, like [Wu and Yap 2008], rely on relevance
feedback provided by users in order to produce the training weights. In contrast, this
current paper relies on automatically produced relevance scores of images from their
tags, with respect to each concept, in order to compute appropriate training weights
for the concept detectors. These relevance scores are produced in terms of user tags, as
well as on visual information and represent external uncertainty associated with the
training labels.

The Fuzzy SVM has been used on a variety of classification tasks for applications be-
yond concept-based image retrieval. For example, the work of [Bovolo et al. 2010] uses
a Fuzzy Input Fuzzy Output variant of Fuzzy SVM for image subpixel classification.
In [Redi and Merialdo 2012], a multimedia framework is proposed, and applied to both
video retrieval and scene recognition tasks. It does not employ the Fuzzy SVM, but
the conventional SVM to rank the training set, which is subsequently split into three
groups and one SVM is trained on each group. Given a query image, the final decision
is calculated using a fusion of the three SVM outputs. Finally, the work of [Liu and
Zheng 2007] employs Fuzzy SVM for video-object extraction. The weight used at the
Fuzzy SVM is a ratio of the object, background and whole image pixel number.

In [Xian 2010; Sohail et al. 2011; Sun et al. 2009], Fuzzy SVM has been used for
medical image classification. The work of [Leng and Wang 2008] uses a facial database
to predict gender using Fuzzy SVM, while a stochastic SVM was constructed in the
work of [Li et al. 2012], and its effectiveness is demonstrated on both artificial and
real data. In the field of economics, the bilateral SVM has been proposed [Wang et al.
2005], that treats each training sample as both positive and negative with a fuzzy
membership.

Beyond the specific case of Fuzzy SVM for multimedia analysis, a rich literature
exists on using publicly available multimedia collections, in order to either generate
training samples for concept detectors, or directly rank image/video collections. How-
ever these approaches do not account for the noise that is inherent to all automatic
training set generation methods.

In [Sang et al. 2012], a personalised retrieval system is proposed, using Flickr tags.
Tag similarity is calculated as a weighted sum of two parameters: tag co-occurrence in
the collection, and WordNet distance. The importance of each parameter is determined
experimentally however. The work of [Zhu et al. 2012] proposes an ontological categori-
sation of concepts also based on WordNet, to increase relevance, and establishes the
Flickr context similarity, as the estimated co-occurrence of tag pairs. In [Ewerth et al.
2012], an automated system is built that periodically updates concept models using
the web, as a means to track the changing trends and concepts. It also uses a vocabu-
lary based on the image tags and the surrounding text of the source web-page. Concept
detectors are constructed on crisp training sets (without the use of training weights).

In the work of [Tsirelis and Delopoulos 2011], user tags have been used to auto-
matically generate ground truth for concept-based image retrieval. Each concept is
defined as a set of words, and a relevance score is calculated for each image using its
tags. Pairs of words are assigned similarity values according to their (co)-occurrences
against a corpus. Subsequently, max and average operators are used to compute the
final score. Using these score values to automatically annotate images and use them
in training SVM classifiers yields better results even when compared to using manual
annotation.

Authors of [Ulges et al. 2009] have applied similar strategies in the area of video
retrieval. They have used tags assigned to YouTube videos, and have created and auto-
mated system that uses query expansion on the tags of the first results page to acquire
a sufficient number of videos and train classifiers for concept-based video retrieval.
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In this paper we present a novel method for building robust concept detectors from
tags, that combines ideas from automatic training set generation and training with
fuzzy SVM. We implement both an improved version of [Tsirelis and Delopoulos 2011]
to calculate relevance scores, and a method to automatically generate training sets. We
subsequently use the Fuzzy SVM to adapt the training procedure and account for the
errors propagated from the user tags into the automatic labelling procedure, and build
robust and effective concept detection models. We perform extensive experiments to
evaluate the effectiveness of the Fuzzy SVM compared to the conventional SVM, and
also additional experiments to study the effect of additional noisy training samples,
and training set size on the resulting effectiveness.

3. FUZZY SVM TRAINING FROM TAGS
Concept detectors based on Fuzzy SVM are built by solving the following optimisation
problem

min
w,b,ξi

(
1

2
wTw +Q+

l∑
i=1

qiξi +Q−
N∑

i=l+1

qiξi

)

s.t.
{
yi(w

Tφ (xi) + b) > 1− ξi
ξi ≥ 0

(1)

where xi, i = 1, . . . , n is the feature vector of the i-th training image, yi is equal to 1 for
images 1 to l, indicating that these images depict the concept (i.e., are relevant), and
−1 for images l + 1 to N (indicating that these images do not depict the concept), and
qi is the image training weight. K(xi,xj) = 〈φ (xi) ,φ (xj)〉 is a (possibly nonlinear)
kernel function corresponding to the inner product in a higher-dimensional Hilbert
space [Burges 1998] and Q+ and Q− are per class misclassification penalty factors.
The slackness variables ξi allow the optimisation problem to remain feasible, even
when the set of training images cannot be separated (with respect to the concept) with
kernel K.

By setting all qi equal to 1, the conventional SVM optimisation problem is obtained.
The addition of qi does not increase the computational complexity of solving (1), com-
pared to the conventional SVM optimisation problem [Lin and Wang 2002].

The resulting SVM model is used to assign a score

f = wTφ(x) + b (2)

to each image x, thus allowing the ranking of images in an unlabelled collection with
respect to the target concept.

In the rest of this Section, we present a method for automatically shaping the train-
ing weights qi based on scores si of a ranking of the images derived from tags (which
is present in Section some relevance ranking of the 3.2).

Given an image, consider the binary random variable C that indicates the relevance
of the image to c (i.e., either C = c or C = c̄) and the random variable S that cor-
responds to its relevance score, as it is computed from tags. The probability that an
image with score s is relevant to concept c is therefore p(C = c|S = s), denoted simply
as p(c|s) in the following.

For a successful ranking mechanism, p(c|s) is a monotone increasing function of s
[Nottelmann and Fuhr 2003]. As a result, high scores yield high probability, implying
high confidence in a positive label assignment. Low scores yield low probability, which
also implies high confidence, however in negative label assignment. Finally, scores that
yield probability close to 0.5 imply minimum confidence of any label assignment. Let
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sthr be a score value that satisfies

p(c|sthr) = 0.5 (3)

Given the monotonicity of p(c|s) with respect to s it is possible to automatically label
the images of the ranked list using

yi =

{
+1, if si > sthr

−1, if si < sthr
(4)

and assign training weights that are a linear transformation of the absolute distance
of each score si from the threshold score sthr

qi = α |si − sthr|+ β (5)

Parametres α and β are calculated so that the pairs (si = sthr, qi = 0) and
(si = maxsi |si − sthr|, qi = 1) satisfy Equation 5. These choices are based on our mo-
tivation that (a) images with scores equal to sthr are equally relevant and irrelevant
and thus should be discarded completely from the training procedure (through the
assignment of zero weight), and (b) the image score with the maximum absolute dis-
tance from sthr is the most relevant or irrelevant (according to Equation 4) and should
be assigned the maximum training weight.

If the probability p(c|s) is known for every score s, we can also substitute si with
p(c|si) and sthr with 0.5 in Equation (5) and obtain an alternative set of training weights
q′i as

q′i = α′ |p(c|si)− 0.5|+ β′ (6)

where parametres α′ and β′ are calculated so that the pairs (pi = 0.5, q′i = 1) and
(pi = maxsi |p(c|si)− 0.5|, q′i = 1) satisfy Equation 6, based on the same motivation for
Equation 5. Equations (5) and (6) correspond to two alternatives for computing the
weights of Fuzzy SVM. We onwards refer to the process of creating training weights
from relevance scores and using a Fuzzy SVM as s-SVM, and respectively to the pro-
cess of creating training weights from relevance probabilities and using a Fuzzy SVM
as p-SVM.

Figure 2 shows the scores of three training sets selected with different selection
strategies (details are provided in the experiments of Section 4.3) and their resulting
weights qi (from the scores si according to Equation (5)) and q′i (from the probabilities
p(c|si), according to Equation (6)).

According to the above, the probabilities p(c|si) are required in order to compute the
threshold sthr that determines the assignment of training labels, as well as the weights
q′i of Equation (6). Accurate estimation of sthr (through the probabilities estimation)
is vital in order to determine proper training weights that enable the Fuzzy SVM
classifiers to incorporate each image label fuzziness in the training process. A method
for estimating these score probabilities from tags is presented in the following Section
3.1.

3.1. Transforming Ranking Scores to Probabilities
Similarly to the approaches presented in [Manmatha et al. 2001; Arampatzis and van
Hameran 2001; Arampatzis and Kamps 2009; Arampatzis and Robertson 2011] we
assume that p(S = s|C = c) and p(S = s|C = c̄) can be approximated independently
using known families of probability density functions (PDFs).

Originally in [Manmatha et al. 2001] the exponential distribution was proposed for
p(s|c), and the Gaussian for p(s|c̄). However, more recent work of [Markov et al. 2012]
concludes that the most general model is to use Gamma distributions for both density
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Fig. 2: Ranking scores (derived from the algorithm described in Section 3.2) and esti-
mated probabilities, and shaped training weights from both. In (a) we have selected
the 500 images with the highest score and the 500 images with the lowest. In (b) we
have chosen approximately 800 images so that their score distribution approaches the
uniform, and in (c) 2, 500 images so that their probabilities distribution approaches a
Gaussian with µ = 0.5 and σ = 0.2.

functions. In this work, we experiment with Gaussian, Weibull and Gamma distribu-
tions, on each of the two PDFs. We observe (Section 4.3) that the best fit for p(s|c) is
the Gaussian whereas the best fit for p(s|c̄) is the Gamma.

Estimating the parameters of the relevant and non-relevant distributions requires
two image sets, one containing only relevant and one containing only non-relevant
images. In order to avoid the need for manual labelling, we propose that all images
that contain the exact concept name in their tags are treated as relevant. An equal
number of images from the remaining images of the collection is randomly chosen and
are treated as non-relevant. These two sets are used to fit the Gaussian and Gamma
distributions. Figure 3 shows an example for concept “beach” from the datasets used
in the experiments of Section 4. This approach is effective since (i) a small number
of samples is required to estimate the one dimensional Gaussian and Gamma distri-
butions, (ii) creating a positive set with “exact matching” of the concept name leads
to high accuracy and (iii) unless a concept has a very high prior in the collection the
selected non-relevant set will also be accurate. These arguments are also supported by
the experimental results presented in Section 4.3.

From the definition of conditional probability and the law of total probability, it can
be easily shown that the probability density function of an image being relevant to
concept c given its score si is given of the form

p(c|si) =

(
1 + λ

p(si|c̄)
p(si|c)

)−1
(7)

where λ = (1− p (c)) /p (c). Since the exact value for λ cannot be accurately obtained,
we propose an estimation of the concept prior probability as the number of candidate
images that include the concept word in their tags, divided by the total number of can-
didate images. This approximation of the prior can be used to produce an estimation of
the real λ. The selection of λ has a low impact on the threshold sthr. Figure 4 shows an
example calculation of the threshold using the real prior probability on a manually an-
notated dataset, the corresponding value calculated based on the proposed estimation
method as well as the threshold for a range of different values of λ. Figure 5 shows the
parametrically computed p(c|si) for concept four different concepts using the estimated
λ. They all approach the sigmoid.
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Fig. 3: Histograms of
ranking scores for posi-
tive (relevant) and nega-
tive (irrelevant) images,
and fitted Gaussian and
Gamma distributions, for
concept “beach”.
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Fig. 5: Probability versus
score sigmoid for four con-
cepts, as estimated by our
proposed method.

In general, there is no analytic solution to Equations (3) and (7). In practice, we
initially estimate the probabilities p(s|c) and p(s|c̄) as previously described and then
find the two images with the closest probability p(c|s) to 0.5, using Equation (7). We
then select as sthr the average of the two scores. In the special case that there exists
an image in the list with probability exactly equal to 0.5, sthr is set equal to the score
of that image.

Another problem may arise for concepts with extremely low prior probability. In such
cases, it is possible that extremely few pictures exist with a ranking score greater than
sthr, or even worse, that p(c|s) is never greater than 0.5. If relevant images do exist,
then this can occur when the assumption made in [Nottelmann and Fuhr 2003] (that
the probability is a monotone preserving transformation of s) does not hold, or when
probability estimation is not accurate enough. To deal with such problems, we can
manually adjust sthr such that p(c|sthr) < 0.5 in order to select some candidate relevant
images.

Even though scores and probabilities can be used to produce training weights inde-
pendently, it should be noted that the estimation of probabilities is essential, even in
the case of training weights derived from scores. Estimating the probabilities allows
for calculation of sthr that is required to transform scores to training weights. In a
sense, sthr allows a physical interpretation of the raw score values.

3.2. Relevance Assessment from Tags Algorithm
In Sections 3 and 3.1 we have presented a method for producing training weights qi for
the Fuzzy SVM given a relevance ranking score si for each image, using Equations (3),
(5) and (6) and a set of images with tags. In this Section we present an improved ver-
sion of the tag-based algorithm proposed in [Tsirelis and Delopoulos 2011] to produce
these ranking scores. Probability estimates and sthr are calculated subsequently using
(7) and (3), to produce training weights based on the ranking scores or the probability
estimates.

Given two words w1 and w2, their similarity is approximated with the help of a
corpus (a collection of extracts of real world texts). In particular, a commonly used
word similarity metric is Pointwise Mutual Information (PMI) [Bouma 2009]. PMI is
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defined as

PMI = ln
p(w1, w2)

p(w1)p(w2)
= lnN

N1,2

N1N2
(8)

where p(wi) is the probability of the word i appearing in a text, and p(w1, w2) the
probability of the words w1 and w2 appearing together in a text. For a corpus with N
texts, out of which N1 contain w1, N2 contain w2 and N1,2 contain both, PMI can be
calculated as shown in Equation (8).

In this work we also experiment with Mutual Information (MI) defined as

MI(w1, w2) = p(w1, w2) ln
p(w1, w2)

p(w1)p(w2)
=
N1,2

N
ln

(
N

N1,2

N1N2

)
(9)

Furthermore, a variant of the above two metrics is defined based on set difference
(i.e. on texts that contain w1 and do not contain w2 and vice versa) in order to perform
similar computations, the Modified PMI is

MPMI(w1, w2) = ln
p(w1, w2)

p(w1, w̄2)p(w̄1, w2)
= ln

(
N

N1,2

M1M2

)
(10)

while the Modified MI is

MMI(w1, w2) = p(w1, w2) ln
p(w1, w2)

p(w1, w̄2)p(w̄1, w2)
=
N1,2

N
ln

(
N

N1,2

M1M2

)
(11)

where p(wi, w̄j) is the probability that wi appears in a text and wj does not, and Mi

is the number of texts that contain wi and do not contain wj . Finally, we also test the
Correlation Coefficient (CR), which is defined as

CR(w1, w2) =
E
{

(I1 − Ī1)(I2 − Ī2)
}

σI1σI2
(12)

where Ii is an indicator binary random variable that is 1 when word wi is in a text
and 0 otherwise, Īi is the mean value of random variable Ii and σIi is the standard
deviation of Ii. CR achieves the best results in the experiments of Section 4.2.

Regardless of the metric used to assess similarity between two words, the relevance
of an image to a concept can be calculated by extending this similarity to sets of words,
namely the set T of image tags and a set of words W that are associated with the
concept.

To populate W, we use a set Tc of words that includes the concept name (usually a
single word) as well as a set of extra a priori selected words that are closely related
to the concept, and are part of the concept’s definition, as per [Tsirelis and Delopou-
los 2011]. We use multiple words for the concept definition in order to disambiguate
between different possible semantic interpretations of the concept word, as in [Diou
et al. 2010a]. The words in W are then retrieved by querying WordNet with each of
the words in Tc and collecting all the resulting synsets. An example of this process
is demonstrated in Table I. It is important to note that in all experiments of Section
4, the words in Tc were selected at the concept definition stage, and the same set is
used for both Fuzzy SVMs and SVM, allowing the valid comparison between the two
methods.

Similarity between a word w and a set of words T is defined as the maximum simi-
larity of w with each of the words in T

R(w,T) = max
t∈T

r(w, t) (13)
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Table I: Example of a concept, the provided concept terms, and the produced set of
words for the concept

Concept word coral
Concept terms Tc coral, sea, seabed
(part of concept definition) marine, sealife, reef
Concept words W coral, sea, ocean,

marin, leatherneck, nautic,
maritim, reef

where r can be any of MI, MMI, PMI, MPMI and CR, or any other metric that estimates
word-pair similarity.

Tsirelis et al. defined in [Tsirelis and Delopoulos 2011] a symmetric similarity func-
tion between sets of words as

sim0(T,W) =
1

|W|
∑
w∈W

R(w,T) +
1

|T|
∑
t∈T

R(t,W) (14)

This metric takes into account both the similarity of each word w of the concept with
a set of image tags T, and conversely, the similarity of each tag t of the image with the
set of concept words W.

In this current work, we extend the definition of Equation (14) so that words of W
are weighted according to their relevance to the concept. To achieve this, the concept
terms Tc are used to factor the two sums of the similarity. The main reason for this
choice is that not all words of W are equally related to the concept c. More specifically,
we update the similarity of each word w of the concept with the image tags to be

R′1(w,T) = R(w,T) ·R(w,Tc) (15)

while the similarity of a tag t to the concept words W becomes

R′2(t,W) = R(t,W) ·R(w∗(t),Tc) (16)

where w∗(t) is the word of W most similar to t, i.e.

w∗(t) = arg max
w∈W

r(w, t)

The similarity between sets of words is now defined as

sim(T,W) =
1

|W|+ |T|

(∑
w∈W

R′1(w,T) +
∑
t∈T

R′2(t,W)

)
(17)

Equation (17) is used to produce ranking scores for every image-concept pair, as re-
quired for training set selection and Fuzzy SVM training discussed in the beginning of
this Section.

3.3. Concept Detector Training Pipeline
Figure 6 summarises the proposed concept detector training pipeline, putting together
all the components discussed in the previous (i.e. computation of relevance scores,
estimation of probabilities, training set selection and weight shaping).

The only input of the pipeline is the concept-terms set Tc (that defines the concept
c). The set of words W is then constructed as described in Section 3.2 and a large
list of images is collected from the community repository, along with the associated
image tags. In case the resulting image set is not sufficiently large, one can use the
following procedure to further expand the set of candidate training images: Each word
of W is submitted as a query to WordNet to retrieve synsets resulting from all possible

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0, Publication date: 2015.



0:12 V. Papapanagiotou et al.

Fig. 6. Concept detector
training pipeline: The pro-
cess starts by providing the
concept terms. An optional
step (denoted with dashed
lines) can use community
repositories to retrieve user
tagged images. Images are
then processed textually (la-
bel and weight assignment)
and visual (feature extrac-
tion), and a training set is
selected. A concept detector
model is then built using the
Fuzzy SVM classifier.

relations such as synonyms, antonyms, meronyms, generalisations, etc. All words of
all returned synsets are used to query the community repository, one at a time.

The training set formulation is bootstrapped by using the similarity between tags of
each image and words of the concept, as presented in Section 3.2 and Equation (17).
As a result, each image is assigned a score, and the probability estimation approach
of Section 3.1 is applied afterwards, resulting in a probability estimate for each image.
The threshold sthr can also be computed according to Equation (3). At this point, train-
ing weights can be shaped using either the ranking scores or the probabilities, and
images can be automatically labelled by comparison of each image score to sthr. Fur-
thermore, instead of using the entire image list as a training set, a selection strategy
can be applied. Out of the many possible options, we choose to select the N top-score
and the N bottom-score images as in the original paper of [Tsirelis and Delopoulos
2011] (we also experiment with additional training set selection methods to further
evaluate the effectiveness of the constructed classifiers, in Section 4.5). Note that se-
lecting according to scores or according to probabilities results in the same set of im-
ages. For both s-SVM and p-SVM the values of the training weights depend on the
selected threshold sthr.

Having constructed the concept’s training set, visual features of the selected images
are computed and are supplied to the Fuzzy SVM training procedure to produce the
output concept detector model.

4. EXPERIMENTS
4.1. Experimental Setup
We apply our framework on two different datasets, the NUS WIDE [Chua et al. 2009]
image collection and the extended MIR FLICKR [Huiskes and Lew 2008; Huiskes et al.
2010] dataset. Both provide manual groundtruth annotations for various concepts per
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Table II: Mean Average Precision of tag-based relevance assessment algorithm for five
word-pair similarity metrics over the 81 NUS-WIDE concepts for the entire image
collection

Metric MI MMI PMI MPMI CR
Mean MAP 0.166 0.129 0.0418 0.150 0.2438

image. We use these annotations in order to create comparable results of the effective-
ness of our method.

NUS WIDE contains about 27, 0000 images collected from Flickr, that have been split
into a development set and a test set. For each image, six visual features are provided,
along with the images’ URLs, user tags, and manual labelling for 81 concepts. We use
this development set as the collected image list (or image pool) described in Section
3.3 (i.e. the set of images that have been gathered after an initial set of queries to
Flickr). We create training sets by selecting images from this development set using
various selection methods (like N top and N bottom). Concept detector effectiveness
is evaluated at the NUS-WIDE test set. As a baseline comparison, the average prior
probability over the 81 concepts in the test set is 0.0232. Prior probabilities for each
individual concept can be found in [Chua et al. 2009].

MIR FLICKR contains 1 million images also collected from Flickr. For each image,
the dataset provides tags, image URLSs, EXIF data and two visual features. Out of the
1 million images, 25, 000 have been manually labelled against 14 concepts. We therefore
selected to use these 25, 000 images as test set, and the remaining 975, 000 images as
pool for training set selection (development set). As a baseline comparison, the average
prior probability is 0.0714 on the 25, 000 annotated images of MIR FLICKR.

4.2. Relevance Assessment from Tags
In this experiment we evaluate the effectiveness of the ranking algorithm for rele-
vance assessment from tags, using the five word-pair similarity functions described
in Section 3.2. We process each image by stemming its tags using the Porter Stem-
mer [Porter 1980] and removing stop words and duplicate tags. Relevance scores are
then calculated for each image-concept pair. For each concept, images are sorted de-
scendingly according to score. Average Precision (AP) results at the entire NUS-WIDE
collection for the five versions of the proposed algorithm are shown in Table II. These
results evaluate the tag-based ranking of the NUS-WIDE development set, as it re-
sults from the algorithm presented in Section 3.2. The manual annotations provided
by the NUS-WIDE dataset are used as groundtruth and the CR achieves the highest
Mean Average Precision (MAP) over the 81 concepts.

Figure 7 shows the top eight images and their scores for three concepts (“castle”,
“cityscape” and “dancing”). These images are taken from the ranking produced by the
algorithm using the CR for word-pair similarity.

4.3. Experiments on Probability Estimation
In order to evaluate different options for the parametric probability density functions
for p(s|c) and p(s|c̄) in Equation (7), we use the score histograms on the set of manually
annotated relevant and non-relevant images respectively as baseline score PDFs.

The method presented in 3.1 is used to obtain data for estimating different types
of parametric distributions. Gaussian, Weibull and Gamma distributions are used for
both relevant and non-relevant score distributions. Jensen-Shannon (JS) divergence
is used to select the most effective distribution compared to the baseline distributions
derived from the histograms. Table III illustrates the mean JS divergence for each
distribution type. A voting evaluation is also presented, where each concept votes the
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(a) 0.2737 (b) 0.27271 (c) 0.26539 (d) 0.26345 (e) 0.25792 (f) 0.24544 (g) 0.23689 (h) 0.22054

(i) 0.27687 (j) 0.2361 (k) 0.22203 (l) 0.21804 (m) 0.217 (n) 0.217 (o) 0.217 (p) 0.21359

(q) 0.3983 (r) 0.35368 (s) 0.35128 (t) 0.35018 (u) 0.34775 (v) 0.3453 (w) 0.34511 (x) 0.33624

Fig. 7: Top eight ranked images for the concepts “castle”, “cityscape” and “dancing” (per
row) using the relevance assessment from tags algorithm with the Correlation Coeffi-
cient metric for word pair similarity. Missing images were omitted. Images courtesy of
Flickr.com.

Table III: Jensen-Shannon divergence for three distributions compared to a baseline
histogram distribution, and number of concepts achieving minimum divergence, both
for relevant and non-relevant images

Jensen-Shannon div. No. of concepts
relevant irrelevant relevant irrelevant

Gaussian 0.7053 0.3845 39 2
Weibull 0.7147 0.2159 28 24
Gamma 0.8143 0.1848 14 55

distribution type that achieves minimum JS divergence (one vote for the relevant im-
ages distribution and one for the non-relevant). Based on these results, we select the
Gaussian-Gamma distributions model for relevant and non-relevant images respec-
tively.

The effect of λ on the computation of sthr in Equations (7) and (3) is measured by com-
paring this threshold for different values of λ. More specifically, we use the thresholds
resulting from λa, obtained using the prior probability from the NUS-WIDE manual
annotation, and λb, obtained using the prior probability estimated through tags (Sec-
tion 3.1). The mean value of the difference of the two thresholds (sthr(λb) − sthr(λa))
over the 81 concepts is found to be −0.0076 and its standard deviation 0.0395. Further-
more, we calculate sthr for a range of λi for each concept, and subtract sthr(λa). We then
obtain the mean threshold difference for each concept and average across the 81 con-
cepts. The result is 0.0151 with standard deviation 0.0235. These results indicate that
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the threshold is only slightly affected by the choice of λ, given that the mean range of
scores on the NUS-WIDE development set is 0.3125 for the 81 concepts.

4.4. Training with s-SVM and p-SVM
In these experiments we evaluate the performance of the proposed s-SVM and p-
SVM training procedure, compared to training without weights using the conventional
SVM. We apply our entire framework separately on the NUS WIDE and MIR FLICKR
datasets. The training set for each concept is selected by sampling from each devel-
opment set. We calculate relevance scores, probabilities and sthr for each concept, and
select the N top and N bottom images according to their score. In all stages of this
pipeline we use only the images and image tags available in the development sets of
each dataset.

In the experiments with NUS WIDE we use the following five feature vectors, pro-
vided by the dataset: 64-D colour histogram (CH), 144-D colour correlogram (CORR),
75-D edge direction histogram (EDH), 128-D wavelet texture (WT), and 255-D block-
wise colour moments (CM55). A total of five classifiers are trained, one on each feature,
and final ranking is performed by average fusion. This late fusion scheme achieved the
highest effectiveness in the paper that introduced the NUS WIDE dataset [Chua et al.
2009]. We experiment both with the linear kernel for all features, as well as with a
combination of non-linear kernels (RBF kernel on WT and CM55, and the χ2 kernel on
CH, CORR and EDH). In the experiments with the MIR FLICKR dataset we use the
edge histogram feature that is provided, using both the linear and the RBF kernel.

Three experiments are performed for each concept. In the first, a conventional SVM
is trained on the 2N automatically labelled images, and is used as a baseline. In the
second, s-SVM is trained on the same images with the same labels, incorporating train-
ing weights of Equation (5). Finally, in the third test, p-SVM is used on the same im-
ages and same labels, with the estimated probabilities as training weights (Equation
(6)).

We select N to be 2, 000 for the 161, 789 images of NUS WIDE. For MIR FLICKR, the
development set contains 975, 000 and we therefore experiment with N equal to 2, 000,
4, 000 and 6, 000, to study the effect of training set size to concept detector effectiveness.
We also set the misclassification penalty factors Q+ = 5 and Q− = 1 for all concepts
and training set sizes in order to boost the effect of the positive class.

The resulting models are used to rank the two test sets. Results in terms of MAP
over the 81 concepts for the NUS WIDE are presented in Table IV. Similarly, results
for the MIR FLICKR over the 14 concepts are presented in Table V for training set
sizes similar to NUS WIDE (N = 2, 000). Tables VI and VII show results for the MIR
FLICKR dataset using larger training sets (N = 4, 000 and N = 6, 000 respectively).

Column “C” presents the mean percentage improvement of each concept’s AP when
using the s-SVM or the p-SVM over the conventional SVM, over the 81 concepts, and
column “D” the probability of a concept AP improving when using the s-SVM or the
p-SVM instead of the SVM. This probability is calculated as the number of concepts
with positive improvement divided by the number of concepts. On average, concept
AP is improved with the s-SVM and p-SVM, as indicated by columns “D” being over
50%. The linear kernel benefits more than the non-linear kernels, as indicated by the
increased mean percentage improvement (column “C”) in row “A” compared to row
“B”. In particular, using the s-SVM on the MIR FLICKR with a linear kernel and the
top-bottom training set selection strategy yields a mean 46% improvement, with 93%
probability of improvement (meaning that AP improved for 13 out of the 14 concepts).

Figure 9 shows number of concepts that correspond to AP improvement bins, ar-
ranged on the horizontal axis, for both s-SVM and p-SVM and both linear and non-
linear kernels. The majority of concept classifiers perform better when trained with
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Table IV: SVM, s-SVM and p-SVM performance for (A) the linear and (B) the non-linear
kernels, in terms of MAP, (C) mean percentage improvement of AP, and (D) percentage
of concepts that improve with s-SVM or p-SVM (NUS WIDE).

Selecting from the top and bottom
SVM s-SVM p-SVM
MAP MAP C D MAP C D

A 0.0760 0.0802 5.5862% 60.4938% 0.0772 2.6102% 62.9630%
B 0.0829 0.0789 −5.8440% 33.3333% 0.0812 −2.7296% 56.7901%

Uniform distribution on relevance scores
SVM s-SVM p-SVM
MAP MAP C D MAP C D

A 0.0605 0.0840 56.2212% 86.4198% 0.0771 32.5218% 75.3086%
B 0.0712 0.0839 30.5509% 77.7778% 0.0806 19.5237% 74.0741%

Gaussian distribution N (0.5, 0.2) on probabilities
SVM s-SVM p-SVM
MAP MAP C D MAP C D

A 0.0290 0.0320 32.5621% 74.0741% 0.0313 23.8333% 70.3704%
B 0.0382 0.0405 32.2053% 69.1358% 0.0412 26.5280% 66.6667%

Table V: SVM, s-SVM and p-SVM performance for (A) the linear and (B) the non-linear
kernels, in terms of MAP, (C) mean percentage improvement of AP, and (D) percentage
of concepts that improve with s-SVM or p-SVM (MIR FLICKR, N = 2, 000).

Selecting from the top and bottom
SVM s-SVM p-SVM
MAP MAP C D MAP C D

A 0.1109 0.1313 46.0246% 92.8571% 0.1229 21.3080% 85.7143%
B 0.1254 0.1362 14.0110% 71.4286% 0.1324 9.2340% 64.2857%

Uniform distribution on relevance scores
SVM s-SVM p-SVM
MAP MAP C D MAP C D

A 0.1070 0.1191 38.0572% 78.5714% 0.1157 25.5499% 71.4286%
B 0.1135 0.1273 28.7751% 85.7143% 0.1248 20.5357% 71.4286%

Gaussian distribution N (0.5, 0.2) on probabilities
SVM s-SVM p-SVM
MAP MAP C D MAP C D

A 0.0713 0.0778 11.5050% 78.5714% 0.0766 5.3514% 71.4286%
B 0.0783 0.0702 −8.3344% 28.5714% 0.0754 1.5586% 42.8571%

Table VI: SVM, s-SVM and p-SVM performance for (A) the linear and (B) the non-linear
kernels, in terms of MAP, (C) mean percentage improvement of AP, and (D) percentage
of concepts that improve with s-SVM or p-SVM (MIR FLICKR, N = 4, 000).

Selecting from the top and bottom
SVM s-SVM p-SVM
MAP MAP C D MAP C D

A 0.1090 0.1275 73.4119% 71.4286% 0.1241 50.3541% 71.4286%
B 0.1256 0.1381 24.6561% 85.7143% 0.1406 30.2030% 78.5714%

Uniform distribution on relevance scores
SVM s-SVM p-SVM
MAP MAP C D MAP C D

A 0.1123 0.1255 50.2851% 71.4286% 0.1193 39.9371% 64.2857%
B 0.1202 0.1298 20.6564% 78.5714% 0.1259 15.7055% 71.4286%

Gaussian distribution N (0.5, 0.2) on probabilities
SVM s-SVM p-SVM
MAP MAP C D MAP C D

A 0.0739 0.0765 5.5018% 50.0000% 0.0769 19.3738% 71.4286%
B 0.0728 0.0759 −0.7722% 35.7143% 0.0727% 3.4715% 64.2857%
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Table VII: SVM, s-SVM and p-SVM performance for (A) the linear and (B) the non-
linear kernels, in terms of MAP, (C) mean percentage improvement of AP, and (D)
percentage of concepts that improve with s-SVM or p-SVM (MIR FLICKR, N = 6, 000).

Selecting from the top and bottom
SVM s-SVM p-SVM
MAP MAP C D MAP C D

A 0.1071 0.1308 95.2771% 78.5714% 0.1210 63.4586% 64.2857%
B 0.1211 0.1371 36.0014% 85.7143% 0.1384 36.0795% 78.5714%

Uniform distribution on relevance scores
SVM s-SVM p-SVM
MAP MAP C D MAP C D

A 0.1126 0.1292 41.9082% 78.5714% 0.1239 33.2484% 78.5714%
B 0.1219 0.1311 15.9130% 85.7143% 0.1324 16.5582% 78.5714%

Gaussian distribution N (0.5, 0.2) on probabilities
SVM s-SVM p-SVM
MAP MAP C D MAP C D

A 0.0743 0.0716 7.1019% 42.8571% 0.0771 16.7360% 64.2857%
B 0.0775 0.0799 8.5190% 57.1429% 0.0779 10.7727% 57.1429%

Fig. 8: Top retrieved images for the concept “tree” on a moderately noisy training set
(uniform distribution of relevance scores). Rows correspond to trained SVM, s-SVM
(using weights from relevance) and p-SVM (using weights from probability). Missing
images were omitted. Note that the completely non-relevant images (a) and (f) have
been been replaced, and more concept-representative images like (e) have been placed
in higher ranking positions. Images courtesy of Flickr.com.

s-SVM or p-SVM, and some concept AP show improvement of as high as 900% on the
NUS WIDE and 280% for the MIR FLICKR.
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Fig. 9: Number of concepts versus percentage improvement of s-SVM and p-SVM clas-
sifiers versus the conventional SVM. Left figure shows results on the NUS WIDE,
using the third training set selection choice (Gaussian distribution of probabilities).
Right figure shows results on the MIR FLICKR, using the first training set selection
choice (N top and N bottom images, N = 6, 000). Only a small number of concepts
show inferior effectiveness, while some concept achieve percentage improvement of
280%, 450% and almost 900%.

4.5. Training on Noisier Setups
In order to further demonstrate the improved effectiveness of s-SVM and p-SVM over
the conventional SVM, we perform all of the experiments described in Section 4.4 two
more times, changing the method of selecting the training set images. The motivation
is to create training sets with different levels of noise (additional errors in automatic
label assignment).

In the first experiment, images are selected so that the distribution of relevance
scores in the produced training set approximates the uniform. This is achieved by
splitting the range of scores into short bins of equal length and randomly sampling
an equal amount of images from each. As a result, the produced training set contains
images with varying confidence for the automatic label assignment, creating moder-
ately noisy training sets. Approximately 2N images (due to the fact that some bins are
sparsely populated) are selected for each concept, to produce comparable results with
the training sets of Section 4.4.

In the second experiment, images are selected so that the distribution of their prob-
abilities approximates a Gaussian with mean µ = 0.5 and standard deviation σ = 0.2.
This is performed by also splitting the score range into equal bins, and random sam-
pling a different number of images from each bin. This selection scheme results in
training sets that include more images with lower confidence for the automatic label
assignment, creating highly noisy training sets. Each training set contains approxi-
mately 2N images (usually slightly less than 2N , again due to the fact that some bins
are sparsely populated).

Results for these two sets of experiments are also available in Tables IV and V, in
the middle and bottom part accordingly. For the moderately noisy selection scheme,
similar MAPs are observed for all classifiers, with s-SVM and p-SVM demonstrating
increased effectiveness. Even though training sets are noisier compared to the ones
of the previous Section, the conventional SVM sometimes achieves marginally higher
effectiveness across the two experiments. This is probably a result of the increased
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diversity of images introduced in the training sets by the uniform sampling method
used to create them. Finally, in the highly noisy training sets (lower part of Table IV),
conventional SVM effectiveness has significantly dropped, because of the introduced
mislabelled images of the training sets. However, both s-SVM and p-SVM clearly out-
perform the conventional SVM, and s-SVM achieve significantly higher effectiveness,
as indicated by the increased number of concepts that improved (column “D”) and the
average percentage improvement of AP of each concept (column “C”).

4.6. Increasing the training set size
Tables VI and VII show results for the same experiments shown in Table V using larger
values for the training set size. In general, classifier effectiveness does not change
significantly the conventional SVM while it has an overall increasing trend for s-SVM
and p-SVM. For example, using a linear kernel and selecting the top N and bottom N
images for the training set (the best performing strategy as indicated both from these
results and the work of [Tsirelis and Delopoulos 2011]), mean percentage improvement
of s-SVM over the conventional is 46% for N = 2, 000, 73% for N = 4, 000 and 95%
for N = 6, 000. This indicates that enriching the training set with additional noisy
examples leads to improvement for the proposed s-SVM and p-SVM approaches, even
if they do not lead to improvement for the conventional SVM. The reason for this
is that the weighting mechanism assigns higher importance weights to samples that
are likely to be correctly labelled, thus leading to better concept detector models. In
this sense, these results are particularly encouraging, since they demonstrate that the
additional gain of extra training samples can be greatly amplified (almost doubled) by
proper incorporation of their reliability through the use of training weights of s-SVM
and p-SVM.

4.7. Comparison with cross-domain concept detectors
One alternative to using tags (and automatically constructing concept detectors) is the
direct application of pre-trained concept models. More specifically, one can train a set of
concept models in an existing, annotated training set, and then apply these models to
the target dataset. We argue [Diou et al. 2010b] that such cross-domain concept detec-
tion approaches cannot be directly applied effectively and that the proposed approach,
that exploits tags, can lead to significantly better results.

To support our argument we performed an additional experiment that compares the
effectiveness of the proposed automatic concept detector training method, with the
direct application of a set of VIREO-374 [Jiang et al. 2007; Jiang et al. 2010] concept
detectors. VIREO-374 provides several pre-trained SVM concept detector models, that
have been trained on the TRECVID2005 development set using the RBF kernel and
a “bag-of-visual-words” feature. Feature extraction software is also provided and was
used for this experiment. The overlap of VIREO-374 and MIR FLICKR is 11 concepts.

The VIREO-374 concept detectors were directly applied to rank the test set of MIR
FLICKR for these concepts, achieving 0.052 MAP. On the other hand, we applied our
method by training RBF models for those 11 concepts using the same feature vec-
tor. We used all three presented strategies for training set selection: top and bottom
(Section 4.4), uniformly distrubuted scores (Section 4.5), and Gaussianly distributed
probabilities (Section 4.5). Results are presented in Table VIII for medium training
set sizes (N = 4, 000). Our method achieves almost four times the MAP of the VIREO-
374 detectors, at the first two experiments. This is particularly motivating, especially
when taking into account that, in the second experiment, a medium level of noise has
been introduced in the training set. Finally, at the third experiment, where the train-
ing set suffers from heavily noised annotations, our method still achieves double MAP
compared to VIREO-374 concept detectors.
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Table VIII: Comparison with cross domain concept detectors using the same feature
vector. MAP over the 11 common concepts of MIR FLICKR and VIREO 374. For our
method, we have used the medium training set sizes (N = 4, 000, similar results are
achieved for N = 2, 000 and N = 6, 000) and performed all three training set selection
methods. For the VIREO-374, we have used the provided trained models directly on
the test set.

SVM s-SVM p-SVM VIREO-374
Top & bottom 0.2013 0.2013 0.2041
Uniform dist. 0.1902 0.1950 0.1972 0.0520
Gaussian dist. 0.1080 0.1282 0.1252

5. CONCLUSIONS
We have presented a novel approach for concept detector training using confidence
values automatically derived from tags as weights in the training procedure of Fuzzy
SVM. First, a highly effective method for ranking candidate training images was
outlined, that uses existing image tags, a reference corpus and wordnet to assign
scores with respect to a concept. Then, two alternatives for computing the training
weights were introduced and evaluated. The first (s-SVM) uses the relevance assess-
ment scores, while the second (p-SVM) is based on relevance probability estimates.

Component-level evaluation experiments indicate the effectiveness of all elements
of the proposed architecture. With respect to the collection of training images, our rel-
evance assessment algorithm achieves a MAP of 24.38%, compared to the mean prior
probability of 2.32% for the NUS-WIDE dataset. For probability mapping, experiments
have evaluated different distributions for estimating probabilities from the relevance
scores of the automatically annotated positive and negative samples. These distribu-
tions require a minimal set of estimated parameters, thus increasing the estimation
accuracy when the number of available samples is small.

The combination of relevance scores and probability is used to produce training
weights for the Fuzzy SVMs. The proposed strategy for automatic training sample se-
lection, labelling, weighting and Fuzzy SVM training, yields concept detector models
with increased effectiveness. In fact, our method, based on s-SVM and p-SVM, achieves
higher average precision values for the NUS-WIDE dataset, compared to the conven-
tional SVM. Additional experiments further demonstrate the training error resilience
of the proposed concept detection mechanism. In these experiments, we experimented
with training sets of lower quality, by introducing additional mislabelled images. In all
cases, the effectiveness of s-SVM and p-SVM remained higher than that of the conven-
tional SVM (up to 64.12% improvement of concept AP for the s-SVM and 29.85% for the
p-SVM, with as many as 89% and 79% of the concepts improving respectively).

Experiments on an additional dataset (MIR FLICKR) indicate that our framework
is general and is not dataset-dependent. We applied the proposed framework directly,
and observed that the s-SVM and p-SVM concept detectors clearly outperform the con-
ventional SVM, achieving 95% and 63% improvement of MAP for s-SVM and p-SVM,
with as many as 93% and 86% of the concepts improving respectively.

Future work includes the extension of the presented ideas to improving concept-
based retrieval using other sources of evidence for training sample relevance, such as
clickthrough data and user-provided feedback.
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Stefanie Nowak and Stefan Rüger. 2010. How reliable are annotations via crowdsourcing: a study about
inter-annotator agreement for multi-label image annotation. In Proceedings of the international confer-
ence on Multimedia information retrieval. ACM, 557–566.

Martin F Porter. 1980. An algorithm for suffix stripping. Program: electronic library and information systems
14, 3 (1980), 130–137.

Gholamreza Rafiee, Satnam Singh Dlay, and Wai Lok Woo. 2010. A review of content-based image retrieval.
In Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010 7th International
Symposium on. IEEE, 775–779.

Yong Rao, Padma Mundur, and Yelena Yesha. 2006. Fuzzy SVM ensembles for relevance feedback in image
retrieval. In Image and Video Retrieval. Springer, 350–359.

Miriam Redi and Bernard Merialdo. 2012. A multimedia retrieval framework based on automatic graded
relevance judgments. In Advances in Multimedia Modeling. Springer, 300–311.

Jitao Sang, Changsheng Xu, and Dongyuan Lu. 2012. Learn to personalized image search from the photo
sharing websites. Multimedia, IEEE Transactions on 14, 4 (2012), 963–974.

Börkur Sigurbjörnsson and Roelof Van Zwol. 2008. Flickr tag recommendation based on collective knowl-
edge. In Proceedings of the 17th international conference on World Wide Web. ACM, 327–336.

Cees G. M. Snoek and Marcel Worring. 2009. Concept-Based Video Retrieval. Foundations and Trends in
Information Retrieval 4, 2 (2009), 215–322. Invited review paper, covering 300 references.

Abu Sayeed Md Sohail, Prabir Bhattacharya, Sudhir P Mudur, and Srinivasan Krishnamurthy. 2011. Classi-
fication of ultrasound medical images using distance based feature selection and fuzzy-SVM. In Pattern
Recognition and Image Analysis. Springer, 176–183.

Zheng Sun, Dianxu Ruan, Yun Ma, Xiaolei Hu, and Xiao-guang Zhang. 2009. Crack defects detection in
radiographic weldment images using FSVM and beamlet transform. In Fuzzy Systems and Knowledge
Discovery, 2009. FSKD’09. Sixth International Conference on, Vol. 3. IEEE, 402–406.

Jinhui Tang, Qiang Chen, Meng Wang, Shuicheng Yan, Tat-Seng Chua, and Ramesh Jain. 2013. Towards
optimizing human labeling for interactive image tagging. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMCCAP) 9, 4 (2013), 29.

Theodora Tsikrika, Christos Diou, Arjen P. de Vries, and Anastasios Delopoulos. 2009. Image annotation
using clickthrough data. In 8th ACM International Conference on Image and Video Retrieval, CIVR.

Theodora Tsikrika, Christos Diou, Arjen P. de Vries, and Anastasios Delopoulos. 2010. Reliability and ef-
fectiveness of clickthrough data for automatic image annotation. Multimedia Tools and Applications
(2010). available online, to appear in press.

Triantafillos Tsirelis and Anastasios Delopoulos. 2011. Automatic ground-truth image generation from user
tags. In 12th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS
2011).

Adrian Ulges, Markus Koch, Damian Borth, and Thomas M Breuel. 2009. Tubetagger-youtube-based con-
cept detection. In Data Mining Workshops, 2009. ICDMW’09. IEEE International Conference on. IEEE,
190–195.

K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek. 2008. A Comparison of Color Features for Visual
Concept Classification. In ACM International Conference on Image and Video Retrieval. 141–150.

Meng Wang and Xian-Sheng Hua. 2011. Active learning in multimedia annotation and retrieval: A survey.
ACM Transactions on Intelligent Systems and Technology (TIST) 2, 2 (2011), 10.

Surong Wang, Manoranjan Dash, Liang-Tien Chia, and Min Xu. 2007. Efficient sampling of training set in
large and noisy multimedia data. ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMCCAP) 3, 3 (2007), 14.

Yongqiao Wang, Shouyang Wang, and Kin Keung Lai. 2005. A new fuzzy support vector machine to evaluate
credit risk. Fuzzy Systems, IEEE Transactions on 13, 6 (2005), 820–831.

Kui Wu and Kim-Hui Yap. 2008. Soft-Labeling Image Scheme Using Fuzzy Support Vector Machine. In
Computational Intelligence in Multimedia Processing: Recent Advances. Springer, 271–290.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0, Publication date: 2015.



Improving Concept-Based Image Retrieval with Training Weights Computed from Tags 0:23

Guang-ming Xian. 2010. An identification method of malignant and benign liver tumors from ultrasonogra-
phy based on GLCM texture features and fuzzy SVM. Expert Systems with Applications 37, 10 (2010),
6737–6741.

Linjun Yang, Bo Geng, Alan Hanjalic, and Xian-Sheng Hua. 2012. A unified context model for web image re-
trieval. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP)
8, 3 (2012), 28.

Jun Zhang and Lei Ye. 2009. Content based image retrieval using unclean positive examples. Image Pro-
cessing, IEEE Transactions on 18, 10 (2009), 2370–2375.

Lei Zhang and Yong Rui. 2013. Image searchfrom thousands to billions in 20 years. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMCCAP) 9, 1s (2013), 36.

Shiai Zhu, Chong-Wah Ngo, and Yu-Gang Jiang. 2012. Sampling and ontologically pooling web images for
visual concept learning. Multimedia, IEEE Transactions on 14, 4 (2012), 1068–1078.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0, Publication date: 2015.


