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Abstract— Monitoring of human eating behaviour has been
attracting interest over the last few years, as a means to a
healthy lifestyle, but also due to its association with serious
health conditions, such as eating disorders and obesity. Use of
self-reports and other non-automated means of monitoring have
been found to be unreliable, compared to the use of wearable
sensors. Various modalities have been reported, such as acoustic
signal from ear-worn microphones, or signal from wearable
strain sensors. In this work, we introduce a new sensor for the
task of chewing detection, based on a novel photoplethysmog-
raphy (PPG) sensor placed on the outer earlobe to perform
the task. We also present a processing pipeline that includes
two chewing detection algorithms from literature and one new
algorithm, to process the captured PPG signal, and present
their effectiveness. Experiments are performed on an annotated
dataset recorded from 21 individuals, including more than 10
hours of eating and non-eating activities. Results show that
the PPG sensor can be successfully used to support dietary
monitoring.

I. INTRODUCTION

Obesity (OB) is a major public health problem globally.
The latest pharmacological interventions are failing [1] and
surgical procedures, while more successful [2], are highly
invasive, riddled with undesirable side effects and not as
relevant as prevention strategies [3]. As an alternative, moni-
toring and modification of dietary behaviour has shown to be
a significantly more promising approach for the treatment of
OB [4], while behavioural interventions have been successful
in clinical environments [5]. In this context, a critical indi-
cator of risk is the frequent occurrence of snacking events
or, in more extreme cases, “continuous eating”.

To objectively measure this behaviour, various approaches
exist; Amft et al. introduce a method for detecting chewing
sounds in [6], with promising results. In their work, a
common air microphone is housed in commercial earphones,
since this position is found to yield the best results. A com-
parison of seven chewing detection algorithms is performed
in [7]. The algorithms are evaluated on a large dataset of
51 subjects, where a total of 6 different food types were
consumed. It is important to note however that microphones
require high sampling rates (44.1 kHz in [6] and 11 kHz in
[7]); this significantly increases both power and processing
requirements. More recently, in [8] the Fractal Dimension
of chewing sounds is examined, and found to be a highly
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discriminative attribute, compared to other non-chewing re-
lated sounds captured by such microphones. Experiments
with resampled versions of the acoustic signal showed that
a low sampling frequency of 2 kHz is sufficient.

Alternative systems for chewing detection have also been
explored. In [9] a jaw motion sensor is realised using a
piezoelectric strain gauge sensor. Feature selection is per-
formed and inter and intra subject classification experiments
using Support Vector Machines yield high accuracy of 81%.
Further use of strain sensors for chewing detection are
presented in [10].

In this work, we introduce a photoplethysmography (PPG)
sensor housed in a prototype chewing sensor that mounts
on the subject’s outer ear. The sensor sampling frequency is
approximately 20 Hz, significantly lower than other systems;
furthermore, contrary to audio sensors, it is not affected by
talking, ambient noise, etc, making it a more robust means to
detect chewing. The sensor hardware and signal processing
methods are presented in Section II. The experimental setup
and evaluation metrics are described in Section III. Section
IV presents the results, and Section V concludes the paper.

II. THE PPG CHEWING SENSOR

Food intake involves the mastication (chewing) of small
pieces of food. During chewing, four muscles are used to
move the jaw and crush the food, progressively transforming
it into a bolus. These muscle movements trigger various
activations, including blood flow variations in areas close
to temporalis and ear, which have long been reported (e.g.
in [11]). Furthermore, the close relationship between the
ear and the jaw during embryonic development results in
the same nerve, the trigeminal nerve, controlling both the
tensor tympani and the chewing muscles. Consequently,
signals which are sent through the trigeminal nerve can affect
both the jaw and the ear muscles. The two joints which
attach the jaw to the skull are located just in front of the
ears. These muscle activations can be captured using EMG
placed at appropriate locations in order to detect chewing;
we have used this technique to generate ground truth as
described in Section III, however it is hard to build cheap and
inconspicuous EMG sensors for everyday dietary monitoring.

In this paper, we study and propose the use of PPG to
capture the jaw and ear muscle motion during chewing.
PPG is an optical measurement method, which is widely
used to measure perfusion via pulse oximetry (SpO2) [12].
It has lately been applied in applications such as heart-
rate monitoring in wearables [13], where the change in
volume caused by the pressure pulse is detected by two
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Light Emitting Diodes (LED) with different wave lengths
(in general a red and an infrared).

Based on the physiology of chewing described above,
placing the PPG sensor in the ear concha seems like a
natural choice; it is close to the temporalis and can effectively
capture blood variations caused by activations of chewing
muscles, it is non-intrusive, and it is also possible to combine
a PPG sensor with a microphone, to further increase the
effectiveness of the monitoring system. Traditionally, mea-
surement of heart rate or blood oxygenation by PPG is highly
sensitive to movement artefacts; in our application, the signal
of interest is in fact the signal captured due to movement
caused by mastication.

A. Hardware of the PPG sensor

For chewing detection with PPG, we are not interested in
measuring the SpO2. Therefore only one LED is used instead
of two. The sensor operates with the ear skin separating
the LED and the photodiode (see Fig. 1); thus, longer wave
lengths increase the transmission capability given a certain
current exerting the LED. We have chosen an infrared (about
950 nm) instead of a green (525 nm).

The proposed PPG chewing sensor (Fig. 1b) therefore
includes only one LED which lightens the skin and a photo-
diode which detects the tiny modulations of light intensity
caused by pulsating blood flow in the tissue. As shown in
Fig. 1a, the LED is placed at the bottom of the ear and the
photo-diode is inserted in the ear canal. The PPG sensor has
been successfully embedded into an earphone-like housing.
Our aim is to use the ear hook of the commercial off-
the-shelf earphone NB439B from New Balance and design
a customised housing in which the optical PPG sensor is
integrated.

The signal acquired by the photo-detector is pre-amplified,
filtered, and digitised at a fixed sampling frequency of 64/3
Hz (the AD convert is clocked at 64 Hz and alternatively
samples 3 channels). In order to avoid signal saturation due
to high density of ambient light, a proprietary compensation
technique is applied. Fig. 2 shows the system block diagram.

The manufacturing by rapid prototyping has been carried
out by the Swiss company Von Allemen. The main criterion
of selection for the manufacturer is the bio-compatibility
aspect. Indeed, since the sensor has to be in contact with
the skin, it is essential to use a material that does not cause
any irritation or other adverse effect on the skin. A material,
called DuraForm PA Powder which is FDA and USP class
VI certified was used. The fabrication process was Selective
Laser Sintering, an additive manufacturing technique that
uses a laser as the power source to sinter powdered material.

B. PPG signal processing

We incorporate a three-stage processing pipeline for the
PPG signal. A sequence of raw signal samples of the PPG
chewing sensor is presented in Fig. 3. The very low fre-
quency components are removed at the first, pre-processing
stage using a high-pass FIR filter with cut-off frequency
around 0.5 Hz. A segment of the filtered signal is shown
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Fig. 1: The prototype PPG chewing sensor 1b and its LED
transmitter and receiver placement 1a.

Fig. 2: The PPG chewing sensor block diagram

in Fig. 4. Additionally, signal amplitude is normalised based
on the control signals received from the amplifier, as the
amplifier automatically adjusts the level of amplification
based on external lighting conditions.

In the second stage, chewing activity detection is per-
formed. Three algorithms are tested for the detection
task. The first one, called Maximum Sound/Signal Energy
(MSEA), is presented in [7] where it is originally used on
audio signals. The signal is divided into consecutive, non-
overlapping frames and the signal energy E[n] is computed
within each frame. Chewing events are detected when the
signal energy reaches a maximum value and at the same
time exceeds a predefined threshold Et. A chewing event
is registered only if the maximum is not exceeded by λ
subsequent frames. In particular, a chew is detected for the
n-th frame if the following expression holds

E[n] > Et and E[n] > E[n+ i] for i = 1, . . . , λ (1)

An important drawback of the algorithm when applied to
audio signals is the confusion of chewing peaks with peaks
found in speech signals. This drawback however is com-
pletely eliminated as the PPG sensor does not capture talking.

The second algorithm, called Low-Pass Filtering Algo-
rithm (LPFA), is presented in [14] and is also applied to
audio signal. A band-pass filter with a very narrow frequency
range (close to the chewing frequency of 1.5 to 2.5 Hz) is
applied to a rectified version of the audio signal. For the
case of PPG, no rectification is required since PPG signals
exhibit much smoother behaviour compared to audio. By



detecting peaks in the filtered version of the signal, the
algorithm is able to identify individual chews. The ideal
chewing frequency can be determined in a subject dependent
way [14] or set to a constant value [7].

The third algorithm, called Chewing-Band Power Algo-
rithm (CBPA), computes the time-varying spectrum of the
signal, based on Welch’s method, i.e. by taking the ensemble
average of the FFT over several overlapping windows for
each frame. In particular, let Xn[k] denote the DFT coeffi-
cients for k = 1, 2, . . . , N for the n-the window. We select a
number of 2q + 1 windows to perform spectrum estimation
using

Sn[k] =
1

2q + 1

q∑
i=−q

‖Xn+i[k]‖2 (2)

The chewing band energy for the n-th window is calculated
as the sum of Sn[k] for those values of k that correspond
to frequencies in the 1.1 - 2.5 Hz band; it is then used as
a criterion for decision, based on a threshold. The threshold
can easily be estimated based on the overall signal power
over an extended time window. Given the chewing regions,
one can detect individual chews by selecting the maxima of
the chewing signal in the region.

Regardless of the choice of the main processing algorithm,
a series of detected chew activations are available to the
pipeline, in the form of a binary signal b(n). Median filtering
is then applied to b(n) to remove some scarce, false positive
activations, yielding the filtered signal b′(n) which is a signal
of pulses (Fig. 5). These pulses are in fact the detected chews,
and are directly compared and evaluated with ground truth
chews, as detailed in Section IV.

Additionally, the third stage integrates chews to chewing
bouts, and subsequently chewing bouts into snacking events
(snacks). Chews are integrated into bouts by first applying a
filter to the time-series of chews that removes isolated chews.
To this end, we define a chew density by a maximum duration
of l seconds (in our case 10) and a minimum number of
chews m (in our case 8) for that duration. For every chew that
we can find a time window of at most l seconds that includes
at least m chews (including the current one), we retain it; for
each chew that we can’t find such a window, we discard it.
This essentially removes some false-positive detections that
can occur due to abrupt environmental light changes. Then,
these dense sequences of chews are directly aggregated into
chewing bouts. Finally, nearby bouts are merged into a snack
if they are no more than l′ minutes (in our case 2) apart.

III. EXPERIMENTAL SETUP

The prototype chewing sensor along with the processing
pipeline were evaluated on a dataset recorded at the Wagenin-
gen University, Netherlands, in the framework of EU funded
program SPLENDID [15]. It contains recordings of 21 indi-
viduals wearing the prototype PPG sensor connected via wire
to a prototype data-logger. Various activities were performed
by each subject in randomised sequences, including pauses,
talking, listening to another person speaking, coughing, and
consumption of a variety of different foods and liquids, such
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Fig. 3: Raw signal from the PPG chewing sensor. Abrupt
changes are caused by the adaptive amplifier.
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Fig. 4: High-pass filtered signal from the PPG chewing
sensor. The red box indicates chewing activity.

as apple, lettuce, potato chips, toffee, water, milk, etc. The
recording for each subject lasts approximately 30 minutes.
The dataset is an expanded version of the one presented in
[8].

Ground truth is available from diaries recorded by experts
supervising the experiment, as well as from Surface EMG
(sEMG) signals from sensors placed on the points of the
face of each subject. The sEMG signals are processed so as
to generate detailed ground truth chews. We use a modified
version of the standard technique presented in [16], extended
with linear prediction from auxiliary sEMG channels. The
chewing regions are then aggregated based on a combination
of the recorded diaries, as well as the integration approach
presented in Section II-B (third stage), to yield the ground
truth for bouts and snacks.

IV. EVALUATION & RESULTS

Evaluation is performed at three different levels, and eval-
uation results are presented in Table I. At the first level, de-
tected chews are evaluated directly, using the sEMG ground
truth chews. A simple matching technique is employed that
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Fig. 5: The boolean signal b(n) that is the output of the
second stage of the pipeline, and the median filtered b′(n).



TABLE I: Precision and Recall for detecting chews, bouts,
and snacks. Algorithms: Maximum signal energy (A), Low-
pass filtering (B), Chewing band power (C).

Chews Bouts Snacks
Prec. Recall Prec. Recall Prec. Recall

A 0.706 0.395 0.862 0.653 0.928 0.916
B 0.534 0.763 0.731 0.993 0.640 0.987
C 0.634 0.565 0.855 0.730 0.824 0.968

allows small drifts for the start and end time-stamps of each
chew. From the detected chews, the ones that are matched
with ground truth chews are labelled as true positives (TP),
and the remaining as false positives (FP). Finally, the non-
matched ground truth chews are labelled as false negatives
(FN).

At the second level, bouts are produced based on each
algorithm’s detected chews, and ground truth bouts based on
the sEMG chews. In order to account for the variations of
the bout duration we compute precision and recall based on
duration. Thus, TP is the total duration where both detection
and ground truth yield chewing, FP is the total duration
where detection yields chewing but ground truth does not,
and FN is the total duration where detection yields no
chewing while ground truth does. Finally, on the third level,
snacks are produced based on bouts, both for the algorithm
and the ground truth. Evaluation is again performed on the
basis of duration.

Regarding individual chews, our system achieves average
results. MSEA achieves relatively high precision, where as
LPFA achieves higher recall. For chewing bouts detection,
the proposed pipeline exhibits significant improvements both
for precision and recall, regardless of the algorithm used for
chewing detection. In particular, when LPFA is employed,
the system achieves remarkable recall of 99.3% while main-
taining precision at 73.1%. Finally, for the last level of
snack event detection, which is the primary mission of our
system, precision and recall are even higher compared to the
already high results for chewing bout detection. MSEA yields
precision and recall both higher than 91%, and LPFA almost
99% recall. These results are particularly encouraging, since
snacking occurrences are an important behavioural indicator
for dietary monitoring and early OB risk detection. Fur-
thermore, the PPG chewing sensor outperforms the acoustic
sensor on the same dataset, as presented in [8].

V. CONCLUSIONS

In this work we have presented a novel chewing sensor
based on PPG and mounted on an ear hook. The main
design of the sensor has been based on our motivation
about ear blood flow relation to chewing activity. We have
applied the sensor in an experiment of 21 individuals, and
validated its effectiveness on three different levels: chews,
bouts, and snacks. The sensor has yielded satisfying results,
especially for the main task of snack detection, where both
precision and recall of more than 91% are achieved for
on of the alternative signal processing pipelines we have

suggested. We thus support the argument that it can be
used for robust, objective dietary monitoring in real-life
conditions. Furthermore, it’s mounting design allows it to
be combined with the already explored audio-based chewing
sensor. Future work includes designing the pipeline that
fuses information from both sensors and further increases
robustness and effectiveness.
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