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A novel chewing detection system based on PPG,
audio and accelerometry

Vasileios Papapanagiotou, Christos Diou, Lingchuan Zhou, Janet van den Boer, Monica Mars,
Anastasios Delopoulos

Abstract—In the context of dietary management, accurate
monitoring of eating habits is receiving increased attention.
Wearable sensors, combined with the connectivity and processing
of modern smart phones, can be used to robustly extract
objective, and real-time measurements of human behaviour. In
particular, for the task of chewing detection, several approaches
based on an in-ear microphone can be found in the literature,
while other types of sensors have also been reported, such as
strain sensors. In this work, performed in the context of the
SPLENDID project, we propose to combine an in-ear microphone
with a photoplethysmography (PPG) sensor placed in the ear
concha, in a new high accuracy and low sampling rate prototype
chewing detection system. We propose a pipeline that initially
processes each sensor signal separately, and then fuses both to
perform the final detection. Features are extracted from each
modality, and support vector machine (SVM) classifiers are used
separately to perform snacking detection.

Finally, we combine the SVM scores from both signals in
a late-fusion scheme, which leads to increased eating detection
accuracy. We evaluate the proposed eating monitoring system on
a challenging, semi-free living dataset of 14 subjects, that includes
more than 60 hours of audio and PPG signal recordings. Results
show that fusing the audio and PPG signals significantly improves
the effectiveness of eating event detection, achieving accuracy up
to 0.938 and class-weighted accuracy up to 0.892.

I. INTRODUCTION

THE emergence of obesity and eating disorders as major
health concerns has triggered intensive research efforts

both for prevention and treatment of the disease. Monitoring of
individual eating behaviour through self-reports, such as ques-
tionnaires, has proven to be highly unreliable since people tend
to significantly underestimate their food intake (the reported
energy intake is sometimes less than the minimum required to
avoid starvation [1]). As a result, it is not possible to rely on
such data for analysis, prevention or treatment purposes.

More recently, rapid advancements of technology in mobile
computing, wearable sensors and computer networks have pro-
vided the tools to create reliable, objective and non-intrusive
systems of monitoring dietary and nutrition habits. Crude
approaches that use questionnaires in electronic/digital form
(e.g. mobile phone-based logging systems) have given way
to more sophisticated methods and systems that do not rely
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on manual user input, but on measuring specific physiological
and behavioural parameters using wearables, and on real-time
analysis of the collected data to infer useful and actionable
information.

Previous approaches for monitoring eating occurrences have
been based on audio recordings aiming to detect the distinct
sound of food being crushed during each chew [2]–[4]. Various
types of microphones have been used (such as open-air, bone-
conduction, etc), usually placed inside the outer ear canal,
where such chewing sounds are naturally amplified due to
the ear physiology. Other approaches have opted for detecting
swallowing sounds, as in [5], based on evidence that the
frequency of swallowing occurrences can be used as a detector
of snacking events or meals [6]. Alternatively, microphones
have also been placed near the throat [7], aiming to detect
swallowing sounds. In [8], audio is used to detect patterns
in chewing and swallowing in order to detect the number of
food items during a meal. Furthermore, other prototype sensors
have been reported such as strain sensors [7], [9] that capture
muscle activity (usually masseter and temporalis muscles),
inertial sensors placed on the hand [10] or, more recently,
proximity sensors placed on the head and hands of the subject
to detect the hand movement that transfers the food from the
plate to the mouth [11].

In this work, we focus on detecting chewing activity as
a means to detect eating events (either meals or snacks).
The chewing detection system is comprised of an open-air
microphone, a photoplethysmography (PPG) sensor, and a
data logger. The data logger is used to store the recorded
signals, and is also equipped with a triaxial accelerometer in
order to detect physical activity, since higher physical activity
levels have been found to lead to false chewing detections.
The data logger is attached to the subject’s belt, while the
chewing sensors are placed on an ear-hook and are positioned
at the subject’s ear (see Figure 1). We evaluate each of the
microphone and PPG sensors separately, and also propose a
late-fusion pipeline that combines signals from both sensors to
increase the system’s effectiveness. The work is performed in
the context of the European funded SPLENDID project [12].

The rest of this paper is organised as follows. Section II
presents related work. Section III presents the hardware of the
proposed chewing detection system and Section IV the signal
processing algorithms for each sensor component, as well as
for their combination. In Section V we present the semi-free
living experimental dataset and component-level evaluation of
our system. Section VI discusses the evaluation results. Finally,
Section VII concludes the paper.
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II. RELATED WORK

In [13], a total of seven audio signal processing algorithms
are evaluated on a dataset of 51 subjects. Audio is captured at
11 kHz by an in-ear microphone, while a second microphone
placed outside the ear is used by one of the algorithms as
reference [14]. Each subject consumes a total of 6 food types,
in “laboratory” conditions (subjects eat specific foods, and
are instructed to avoid talking or other sounds). Evaluation
includes new algorithms, as well as algorithms known from the
bibliography (such as [15] and [16]). The best results indicate
chewing event detection precision and recall in the range of
70% to 80% in the paper’s dataset.

In [17] the authors report the use an in-ear microphone
sampled at 44.1 kHz both for automatic dietary monitoring
and food type detection. Spectral analysis is performed on
chewing sounds, and a subject-specific algorithm (that requires
a training phase) is proposed. Experiments with a single
subject achieve 52% precision and 93% recall for chewing
event detection and two food types.

A multi-sensor system for chewing detection is proposed
in [11]; it includes a strain sensor that detects jaw motion,
a hand gesture sensor, and an accelerometer. At the first
stage, an algorithm performs detection of food intake intervals
by combining the sensor measurements. For these intervals,
various features are extracted from each sensor individually,
and Artificial Neural Networks are used to perform leave-
one-subject-out (LOSO) validation. Authors report an average
accuracy of almost 90%.

Swallowing sounds detection is performed in [18]. Authors
use electromyography sensors and a microphone housed in a
soft fabric worn around the subject’s throat. Two detection
algorithms are examined, one based on signal energy peaks
(activations), and one on detecting a predetermined pattern.
A dataset of 5 subjects is used to evaluate the method under
strict laboratory conditions. The set of food types includes
only water, yogurt and bread, however the data collection
was repeated on two different days to account for physiologic
variations. A total of 4.85 hours were recorded, out of which
27.2 minutes are swallowing sounds. Authors report accuracy
of 73% to 75%.

In [19], a wearable jaw motion sensor is used to detect
chewing activity. Authors use a feature selection method and
perform classification using SVM with both linear and radial
basis function (RBF) kernel. Evaluation is performed on a
semi-free living dataset of 7 subjects; each subject participated
for 3 days. Each day session lasted approximately 50 minutes,
and the subject followed a routine of talking, walking, eating,
and finally resting, each for 10 minutes. Authors report average
accuracy of 90.5%.

Contribution: Our work contributes in this area of auto-
mated food intake monitoring by introducing a novel, low-rate
chewing detection system based on PPG and audio sensors,
which, combined with an accelerometer, can lead to accurate
snacking event detection and analysis in real-life operating
conditions. We significantly extend our previous work reported
in [4] and [20] by introducing a complete, non-invasive detec-
tion system, proposing a complex signal processing pipeline

(a) The chewing
sensors

(b) The data logger (c) PPG placement

Fig. 1: The prototype chewing sensors (Figure 1a); the data
logger (Figure 1b); the PPG LED transmitter and receiver ear
placement (Figure 1c).

with late fusion of SVM scores, and exploring the effect
of accelerometer signals on the system’s effectiveness. We
support these claims through extensive experiments on a
challenging dataset consisting of over 60 hours of semi-free
living recordings with 14 subjects, 86 meals and snacks of
various food types and durations.

III. CHEWING DETECTION HARDWARE

The proposed chewing detection system hardware consists
of an in-ear housing of a microphone and a PPG sensor (shown
in Figure 1). The microphone is placed inside the outer ear
canal, while the PPG transmitter and receiver are placed on
both sides of the ear concha, as there is strong evidence that
chewing activity significantly affects blood flow in that area
[21]. The chewing sensors are connected via a wire to a data
logger that samples and stores the audio and PPG signals
(a version of the data logger which transmits the signals via
Bluetooth to a mobile phone is currently under development).
Similarly to [11], the data logger is also equipped with a
triaxial accelerometer, that is used for detecting intervals of
high physical activity (such as walking, running, etc). During
experimentation we have observed that such intervals are
frequently misclassified by our system as eating when in fact
they are not. Interference of such activities in detection has
also been reported in [9].

A. PPG sensor

Chewing mainly involves the use of the masseter, the tem-
poralis, the medial pterygoid and the lateral pterygoid muscles.
These are used to progressively process each bite, transforming
it to a wet bolus that can be swallowed. Activation of these
muscles affects blood flow in various points around them;
one such point is the ear concha. These variations have long
been detected and reported, in [21]. However, to the extent of
our knowledge, no approach exists that relies on blood flow
variations in order to detect chewing activity and food intake.

PPG is a method for optically obtaining volumetric mea-
surements, and is widely used to measure perfusion via pulse
oximetry [22]. It has been lately applied in applications such
as heart-rate monitoring in wearables [23]. In our chewing
sensors, a light-emitting-diode (LED) is used to illuminate the
skin, from the outer side of the ear. A photo-diode placed
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Fig. 2: Signal from the PPG chewing sensor after high-pass
filtering. The red box indicates chewing activity. The signal
pulses from 1195 to 1206 seconds correspond to heart-rate.
The difference in amplification between the captured heart-
rate and chewing components is essential to the PPG-based
chewing detection.

inside the ear concha is used to measure the amount of light
transmitted through the skin. Thus, the PPG can be used
to capture the heart rate, by detecting periodicities in the
range of 1 to 1.5 Hz (60 to 90 heart-bpms). However, during
chewing, variations are created by the masseter and mainly
the temporalis. These variations are produced as pressure is
applied by the jaw to crush the food, and thus occur in
synchronisation with each individual chew.

During the processing of each bite, a sequence of chews
occurs, called a chewing bout. A bout starts with the first chew
after biting or inserting the food in the mouth, and ends with
the last chew before swallowing. During a bout, the individual
chews appear with an approximately constant rate. This rate
is in the band of 1 to 2 Hz (where in this case Hz is chews-
per-second, Figure 2). Thus, detection of such intervals, where
these frequencies are dominant, is the basis upon which we
have designed the algorithm for processing the PPG signal.

Using a PPG sensor offers many advantages over a mi-
crophone and other sensors used in the literature. The in-ear
PPG sensor is small and highly non-intrusive, compared to
sensors housed in collars placed around the subject’s throat.
As it does not capture sound, it is not affected by ambient
noises, talking, and other types of non-useful signal. It can also
be combined with a microphone sensor, as we show in this
work, in order to further increase the detection effectiveness
and robustness. Finally, it has low power consumption and
processing requirements, since it is sampled at a low frequency
of 21.3 Hz.

However, the PPG signal is not entirely noise-free. Abrupt
changes of environmental lighting can create significant arte-
facts, and can also lead to signal saturation (Figure 3). Such
changes are usually caused by the subject moving to different
places, for example walking out of a building into a sunny
day or vice versa. To reduce the effect of such events, (a)
adaptive amplification of the captured PPG signal is performed
at hardware level, and (b) a pre-processing stage in the
proposed signal processing algorithm (please refer to Section
IV-A for details on these pre-processing steps). Furthermore,
correct placement of the sensor is very important to achieve
higher amplification for chewing signals compared to heart-
beat (Figure 2) since both these signals significantly overlap
in the frequency domain. This limitation is imposed by the
current one-size-fits-all design of the system’s hardware, and
future work includes development of a better PPG sensor
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Fig. 3: Raw signal from the PPG chewing sensor. Abrupt
changes are caused by the adaptive amplifier.

housing to overcome this problem.
The PPG sensor used in our work consists of photo-diode

BPW34FS and LED SFH4247, both manufactured by Osram.
The photo-diode is especially designed to operate in the
wavelength range of 870 to 1100nm, while the LED emits
at 940nm; light is sampled at 64/3 Hz (approximately 21.3
Hz). The PPG signal is adaptively amplified at the hardware
level of the data logger. This requires that ambient light is
also measured, by temporarily switching off the LED and
measuring light intensity at the photo-diode. Ambient light
is then subtracted from values measured while the LED is
switched on (and emitting light). Based on these ambient-light-
free values, the amplification level changes to ensure that the
PPG signal is neither insufficiently amplified nor saturated.
The data logger provides control signals that indicate the
amplification level, which are used by the pre-processing stage
of the PPG algorithm (Section IV-A).

B. Microphone sensor

The chewing detection system is also equipped with a
microphone. We use an omni-directional model (FG-23329-
D65) manufactured by Knowles that exhibits a sensitivity of
−53 dB around the 1 kHz band. As shown in Figure 1, it is
housed in an off-the-shelf ear bud, commonly used by mobile
phone earphones; as a result, the sensor is placed inside the
outer ear canal. This setup allows capturing of body-generated
sounds, such as the crushing sounds of chews as well as
talking, at higher level compared to external sounds, such as
ambient noise, other people talking, etc.

In the dataset used in our experiments, audio was originally
recorded at 48 kHz. Then, each recording was processed by
a low-pass anti-aliasing filter and was down-sampled at 2
kHz. The down-sampling was required since the data logger
employed in was built for experimental evaluation of various
design parameters, including audio sampling frequency. Fea-
ture models will directly sample audio at 2 kHz. The entire
processing pipeline has been implemented in MATLAB, using
the libSVM library for SVM training and prediction.

C. Data logger

The chewing detection system is connected via a wire to a
data logger, worn at the subject’s waist. The data logger is used
to sample and store the signals from the chewing detection
system in a memory card. It is also equipped with a triaxial
accelerometer (LIS3DH by STMicroelectronics), sampled in
the same frequency of 21.3 Hz, as is the PPG sensor. The
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Fig. 4: The proposed eating detection pipeline. Features are ex-
tracted from windows of the audio and PPG signals and a score
is computed for each window of each modality using SVMs.
The SVM outputs are combined in a late-fusion approach in
order to detect eating events. The effectiveness can further be
improved by introducing physical activity information in the
last stage of the detection.

accelerometer operates with a very low supply current of 6 to
11µA and very high sensitivity (1 to 12mg/digit).

The signal from the accelerometer is used to provide infor-
mation regarding the subject’s physical activity level in order
to assist our algorithms into discriminating between chewing
and physical activity which occurs at similar frequencies as
chewing, such as walking, running, etc.

IV. CHEWING DETECTION ALGORITHMS

In this Section we present the proposed algorithm for
detecting eating events. We first present an algorithm for
detecting eating events based solely on PPG, then another
algorithm for audio, and finally the fusion of the two cues.
The signal processing pipeline is shown in Figure 4.

All chewing detection algorithms are based on the following
assumptions. Eating produces sequences of chews. Each chew
lasts approximately 0.1 to 0.8 seconds, and subsequent chews
are usually close to each other. Chews can be grouped into
chewing bouts; a bout starts the moment food is placed into
the subject’s mouth and ends at swallowing. Each bout can
last several seconds. Finally, bouts can be grouped into eating
events; we use the term eating event to denote any complete
session of eating activity. For example, eating a banana as
a snack is a eating event; a full dinner (that can include
first and main dishes and desert) is also an eating event.
In the following, chews, bouts as well as eating events are
represented by time intervals; they require a start and an end
timestamp to be defined.

A. PPG-based chewing detection

The algorithm that processes the PPG signal aims at detect-
ing intervals in the signal where the energy in the chewing
frequency band is high. Initially, a pre-processing step is
performed where the signal is smoothed using an high pass
FIR filter with a cut-off frequency of 0.5 Hz. Subsequently,
the control signals are used to smooth the filtered signal.
More specifically, the time moments that amplification changes
can be obtained using the derivative of the control signals.
Amplification changes cause sudden offsets in the signal; this
offsets survive the FIR filter as spikes. For this reason, a
5-second interval centred around each amplification change
is replaced with 0-values on the filtered signal, essentially
removing these spikes.

Next, we compute the time varying spectrum (TVS) of the
signal based on Welch’s method. This is achieved by first
computing the discrete Fourier transform (DFT) over a sliding
window of N = 128 samples (6 seconds) length and 1 sample
step; the mean of each window is subtracted from its samples’
values and a hamming window is applied before computing
the DFT. The sliding window of 6 seconds is long enough to
capture the effect of high activation due to chewing. We then
compute the ensemble average of the DFT coefficients over
several overlapping windows for each frame. In particular, let
Xn[k] denote the DFT coefficients for k = 1, 2, . . . , N for the
n-th window; note that since the signal is real-valued, we need
only compute Xn[k] for k = 1, 2, . . . , bN2 c + 1. We select a
number of 2q + 1 windows to perform spectrum estimation
using

Sn[k] =
1

2q + 1

q∑
i=−q

‖Xn+i[k]‖2 (1)

In our experiments, we have picked q = 12. Thus, TVS is
estimated on a longer sliding window of 152 samples with 1
sample step.

We then compute the energy un[i] in 5 log-scale frequency
bands (i = 1, . . . , 5); the second and third bands are centred
around the chewing band (as per [20]). More specifically, the
65 coefficients of TVS are grouped in 5 bands, corresponding
to the following analog frequency ranges (in Hz): 0.0 − 1.0,
1.0−1.8, 1.8−3.3, 3.3−5.9 and 5.9−10.7. A 10-dimensional
feature vector is constructed (see Table I); the first 5 features
are the energy values un[i] of each band, whereas the latter
5 are the energy histogram u′n[i] obtained by normalising as
u′n[i] = un[i]/

∑5
j=1 un[j]. The histogram features may seem

linearly dependant on the energy values; however, the scaling
parameter (

∑5
j=1 un[j])

−1 is different for each feature vector,
and thus the histogram provides additional information.

An SVM classifier with RBF kernel is used to perform
detection; parameters C of SVM and γ of the RBF kernel are
computed using a grid search (details are provided in Section
V-C). The SVM score is computed as

s′ppg[n] = w · f [n] + b (2)

where w is the separating hyperplane normal vector, f [n] is the
feature vector corresponding to the n-th window, and b is the
offset. To account for the slow transitions from eating to non-
eating behaviour (and vice versa), we apply a relatively long
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Fig. 5: Example of smoothing SVM scores. Dinner starts at
7501 seconds according to ground truth. Temporal average of
SVM scores clearly increases when eating activity starts; this
is captured very clearly by the smoothed SVM scores.

TABLE I: PPG and audio features.

Feature Dimension Window

PPG features
1 Energy of log-band 5 6 sec
2 Energy histogram 5 6 sec

Audio features
1 Energy of log-band 9 0.2 sec
2 Fractal Dimension 1 0.1 sec
3 Condition number 1 0.1 sec
4 Skewness m3(0, 0) 1 0.1 sec
5 Kurtosis m4(0, 0, 0) 1 0.1 sec
6 Moment m4(0, 1, 1) 1 0.1 sec
7 Moment m4(0, 2, 2) 1 0.1 sec

(1-minute) smoothing hamming filter on the decision scores
s′ppg, obtaining the PPG score signal sppg[n]; this is essential
to eliminate the high variation of the decision scores. These
variations can occur in-between chews, where the classifier can
temporarily yield lower scores. Figure 5 shows an example of
original SVM scores and their smoothed version.

Thresholding sppg yields intervals with eating activity that
correspond to chewing bouts. Specifically, given a threshold
Appg, we can directly identify detected chewing bouts as time
intervals bi = [ts[i], te[i]], i = 1, . . . , Nb, where

sppg[n] > Appg (3)

only for those n such that ts[i] < n < te[i]. The effect of
various threshold values allows a trade-off between precision
and recall; this is presented in Section V-C.

We then compute eating events ei, i = 1, 2, . . . , Ne based
on the detected bouts using a two stage process. At first,
successive bouts are merged if they are no more than Tgap
seconds apart (we have picked Tgap = 60 seconds); in particu-
lar, given two consecutive bout intervals bi = [ts[i], te[i]] and
bi+1 = [ts[i+ 1], te[i+ 1]], if

te[i+ 1]− ts[i] < Tgap (4)

holds, bi and bi+1 are discarded and replaced with the new
interval [ts[i], te[i + 1]]; note that the duration of this new
interval is greater than the sum of the durations of the two
discarded ones. Completing all merges yields a set of intervals
which are possible eating events ei.
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Fig. 6: Two examples of computing events from bouts. Bouts
b1, b2 and b3 are merged into interval e1 and bouts b4, b5 and
b6 into e2. However, interval e1 is discarded as more than 75%
of its duration is not covered by bouts. In contrast, interval e2
is retained, and is the one and only detected eating event of
the example.
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Fig. 7: Audio signal after pre-processing; three distinct chews
are shown.

The merging process can however create intervals ei that are
long enough, yet they have been created by merging very short
(and probably erroneously-detected) bouts. The second stage
aims at removing such intervals. In particular, given an eating
event ei that has been produced by a series of consecutive
bouts, we require that at least 25% of the duration of ei is
occupied by the bouts. Figure 6 demontrates this two-stage
process.

B. Audio-Based chewing detection

This Section describes the audio signal processing pipeline.
As a pre-processing step, we apply a high-pass FIR filter with
a cut-off frequency of 20 Hz in order to remove the low-
frequency components of the signal, since it provides no useful
information. We have observed that this also removes some
noises that register low frequency content on the microphone,
such as the blowing wind, vehicle sounds, etc. An example
of such a pre-processed signal with 3 chews is shown in
Figure 7. A feature vector is then computed that consists
of (a) signal energy in 9 log-scale frequency bands based
on TVS estimation, (b) fractal dimension (FD), (c) condition
number (CN) of the auto-correlation matrix, and (d) higher
order statistics (3-rd and 4-th order moments); Table I lists all
the features extracted from the audio signal. In the following,
we provide details and rationale for each of these features.

The duration of the sliding window is 0.2 seconds for
the spectral features and 0.1 seconds for non-spectral ones;
the selection of short windows allows the detection of very
brief chews. Each window is pre-processed by subtracting its
mean, applying a hamming window, and dividing it by its
standard deviation (STD). This last step essentially eliminates
amplification-level changes that occur between subjects (due
to different fitting of the chewing detection system) as well
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as during a single session recording (due to the subject
transitioning to noisier environments or interfering with the
sensor).

Audio TVS estimation is also performed; however, it is
important to note that audio TVS estimation captures dif-
ferent frequency information from PPG. Indeed, while PPG
TVS aims at capturing the 1 to 2 Hz frequency of chewing
occurrences, audio TVS captures frequencies up to 1000
Hz in much shorter windows, which correspond to texture
information of each individual chew (or sound). The 129
coefficients of TVS are grouped in 9 bands, corresponding
to the following analog frequency ranges (in Hz): 0.0 − 4.0,
4.0− 7.4, 7.4− 15.8, 15.8− 31.6, 31.6− 63.0, 63.0− 125.9,
125.9− 251.2, 251.2− 501.2, and 501.2− 1000.

As shown in our earlier work [4], chewing sounds are
highly fractal, and can be easily discriminated from talking,
and potentially ambient noise based on their FD. We have
also shown that this property is preserved, even for severely
down-sampled versions of the signal. The FD is computed
using the algorithm of [24] (more details on the FD-based
chewing detection can be found in [4]). This feature can
discriminate talking from chewing sounds with very high
accuracy; talking is also detected by CN. CN is defined as
the ratio of the greatest to the smallest eigenvalue of the auto-
correlation matrix R; we estimate a 6 × 6 auto-correlation
matrix, where R(i, j) = m2(i−j). The auto-correlation matrix
R is computed for each pre-processed window of audio y.

Finally, higher order statistics help differentiate chewing
from other noise-like sounds (city-buzz coming in from a
window or while walking on the street, sounds produced by
a vacuum cleaner, etc), as they are known to be insensitive to
white noise. We estimate 4 moments [25]: (a) skewness

m3(0, 0) =

l−1∑
i=0

(y[i]− µy)
3 (5)

and (b) 4-th order moments with lags (l1, l2, l3) = (0, 0, 0) (or
kurtosis), (l1, l2, l3) = (0, 1, 1), and (l1, l2, l3) = (0, 2, 2)

m4(l1, l2, l3) =

N ′
y∑

i=0

(y[i]− µy)

3∏
j=1

(y[i+ lj ]− µy)

 (6)

where y is a pre-processed window of audio of Ny samples,
µy is the mean of y (and is equal to 0 due to the window
pre-processing), and N ′y = Ny−1−max{l1, l2, l3}. We must
emphasise that these moments are in fact normalised by the
power of the signal window, thanks to the normalisation in the
window pre-processing step.

To account for the high variance of the spectrum and
moment estimators we apply a smoothing filter on each feature
(against time) using a 3.75-second hamming window. An SVM
classifier with RBF kernel is then used with the smoothed
feature vector; parameters C and γ are computed with a grid
search (more in Section V-C). The SVM score s′audio[n] is
computed as per Equation 2. The same long smoothing filter
that is used to obtain sppg from s′ppg is also applied on the
audio SVM scores, yielding saudio[n].

A threshold Aaudio (see Section V-C) is then used to identify
individual chews. Chews are first merged into bouts (when
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Fig. 8: An example of thresholding the acceleration-based
signal E′. From approximately minute 60 to 64, high physical
activity is detected which probably indicates no eating activity.

they are closer than 2 seconds, and a minimum duration of
5 seconds is also required for each bout), and bouts are then
merged into eating events, in exactly the same way as of PPG
detection (Section IV-A).

C. Physical activity thresholding

One of the biggest challenges of dietary monitoring in real-
life conditions is interference from physical activity, such as
walking or running. Walking naturally occurs at a frequency
of 1 to 2 Hz, which is the same as the chewing band that
the PPG chewing sensor captures. To improve the effective-
ness of our system, we use a triaxial accelerometer that is
embedded in the data logger. Processing of the accelerometer
signal involves first computing the total acceleration a[n] from
the axis measurements ax[n], ay[n], and az[n] as a[n] =√
a2x[n] + a2y[n] + a2z[n]. A high-pass FIR filter with cut-off

frequency at approximately 1 Hz is then applied to remove the
DC offset due to gravity [26]. Signal energy Ea is then esti-
mated at a rate of 0.28 seconds (6 samples) using a 5 second
window, centred around n, as Ea[n] = 1

Na

∑
i (a[i]− µa)

2

where the summation is across all Na samples of the current
window, and µa is the mean of the current window samples.
Finally, the energy signal is dilated [27] using a structure
element of ones, of 6.5 seconds length, thus expanding the
effect of physical activity in order to avoid confusion during
transient moments.

The resulting dilated signal E′a[n] is then thresholded using
an empirically set value E′thr, so that only high activity levels
exceed the threshold (the same threshold value was used
throughout all experiments of this work). An example is shown
in Figure 8. Intervals exceeding the threshold are interpreted
as intervals with high physical activity, walking, running, etc,
which are less likely to contain chewing activity. We thus
discard any detected eating during these intervals, in order to
avoid false detections. There exists however the case, where
a subject can be walking while simultaneously eating; the
algorithm is then bound to miss this eating event. In general
however, the gain in effectiveness is higher when making use
of E′a (Section V-C).

D. Fusion - proposed pipeline

In order to increase effectiveness, we combine the micro-
phone and the PPG sensor in a late-fusion scheme. We use the
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smoothed decision scores saudio[n] and sppg[n] of the the audio
and PPG SVM classifiers respectively. Since these signals have
different sampling frequencies, we down-sample saudio (which
has the highest rate) to the frequency of sppg using linear
interpolation.

The final decision is carried out using the following equation

sppg[n] + α · s′audio[n] > Afusion (7)

where s′audio denotes the down-sampled version of saudio.
Parameter α defines the factor by which the microphone
contributes to the final decision, and parameter Afusion defines
the strictness of the classification (see Section V-C).

V. EVALUATION

A. Dataset

The proposed system is evaluated on a semi-controlled
dataset collected using the prototype sensors. The data col-
lection took place in the Wageningen University, during the
summer of 2015. A total of 22 subjects used the system;
19 females and 3 males with a mean age of 22.9 years and
a mean body mass index of 28.0 km/m2. Out of the 22
subjects, 19 participated in the data collection for 2 days,
which were two weeks apart; the remaining 3 participated only
for one day. Each of the 41 day sessions contains recordings
of approximately 5 hours, split over two or three data-files,
depending on the overall length. Due to hardware failures
(missing recordings, recordings included only digital noise or
extremely saturated signals) we have collected a total of 26
such data-files from 14 subjects. The total duration of the 26
data-files is approximately 60 hours (per sensor), out of which
7.6 hours correspond to eating activity.

The recordings started and concluded at the university
premises where the subjects were monitored; eating and
physical activity occurrences for each subject were recorded
in a diary. Subjects were instructed to wear the data logger
and chewing detection system throughout the recording, and
were informed that they could abort the study at any point
without consequences. Prior to the recording the subjects
were familiarised with the sensor. The recording protocol
began with some free-time, and then each subject ate lunch;
a selection of food types were available for consumption (see
Table II). After lunch, the subjects were able to spend the
rest of the afternoon freely, and were allowed to leave the
university premises. They were instructed to eat 3 snacks
of their choice (e.g. an apple or candy bar; the full list of
consumed snacks is shown in Table III) and perform at least
4 high physical activity tasks of their choice during that time.
Subjects were also free to drink anything, however we have
not marked drinking events for detection.

Activities included lying inside, sitting inside or outside,
walking inside including stairs and elevators, walking outside,
washing dishes, vacuuming, playing ball, and cycling inside
and outside. At the end of the afternoon, subjects assembled
to the dining room for dinner; available food types for dinner
are shown in Table IV. In the end, subjects ate two main meals
during each day, and 2 to 6 snacks.

TABLE II: Food types consumed during lunches

Type Day 1 Day 2

Bread Sliced bread, crackers Soft buns, baguette, rusk
Topping Butter, jam, Butter, jam,

chocolate sprinkles, chocolate sprinkles,
chocolate spread, chocolate spread,
peanut butter, cheese, peanut butter, cheese,
sliced meat sliced meat

Fruit Grapes, banana, apple Grapes, banana, apple
Drinks Water, milk, orange juice Water, milk, orange juice

TABLE III: Food types consumed during snacks

Type Day 1 Day 2

Fruit Grapes, banana, apple Orange, strawberry, kiwi,
Cookie Bastogne cookie, gingerbread, Hazelnut waffle, spongecake

fruit biscuit caramel waffle
Chips - Potato chips
Candy Hard boiled candy, liquorice, Lollipop, wine gums

twix bar, chewing gum mars bar
Drinks Coffee, tea, hot chocolate, Coffee, tea, hot chocolate,

water, lemonade, orange water, lemonade, orange
juice, coke juice, coke, milk

Annotation was performed in a two-stage process. During
the first stage, organisers of the data collection study monitored
the subjects and created detailed diaries regarding their eating
and physical activities. This was possible since only 3 subjects
were using the system at any given day. In the second stage, we
marked eating events (start and end timestamps) by listening
to the entire audio files and simultaneously observing the
waveform visually. The second stage annotations were then
cross-checked with the diaries, to minimise the chance of no
lost eating events.

B. Evaluation metrics

Three types of evaluation are used in the experiments: (a)
leave-one-subject-out (LOSO) duration-based, (b) cumulative
duration-based and (c) event-based.

1) LOSO duration-based evaluation: To evaluate an eating
event detector based on duration, each data-file is manually
partitioned into consecutive, non-overlapping intervals using
the ‘Audacity’1 software; each interval is marked either as
positive (‘eating’) or negative (‘non-eating’) based on ground
truth. Drinks and chewing gum are not marked as positive. A
second partitioning is derived in the same way, however it is
based on the output of the evaluated detector instead of ground

1http://www.audacityteam.org/

TABLE IV: Food types consumed during dinners

Type Day 1 Day 2

Potatoes Boiled Puree
Vegetables French beans Salad (lettuce, tomato,

cucumber, boiled egg)
Meat Meatball, wrapped in a slice Chicken schnitzel

of meat
Condiment Gravy Salad dressing
Dessert Custard, vanilla & chocolate Vanilla ice cream



JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 8

Time (sec)

0 2 4 6 8 10 12 14 16 18

Ground truth

Detected

TN FN TP FN TN FP TN

Fig. 9: Example of confusion matrix calculation for duration-
based evaluation; for this 19-second duration recording we
derive: TP = 4, FP = 2, TN = 7, FN = 6.

truth (the process for obtaining detector eating event intervals
is described in Section IV-A). We calculate:

• True positive (TP ) time as the total duration of the
recording during which both the detector and ground truth
indicate ‘eating’.

• False positive (FP ) time as the total duration of the
recording during which the detector indicates ‘eating’ and
ground truth indicates ‘non-eating’.

• True negative (TN ) time is calculated as the total dura-
tion of the recording during which both the detector and
ground truth indicate ‘non-eating’.

• False negative (FN ) time is calculated as the total dura-
tion of the recording during which the detector indicates
‘non-eating’ and ground truth indicates ‘eating’.

An example is illustrated in Figure 9. It is important to note
that time is not quantised; the duration of each interval is used
to perform the computations.

Since there exist multiple data-files for each subject, we
calculate one confusion matrix per subject by summing all the
confusion matrices from the data-files of that subject. Various
metrics (e.g. precision, recall) are then calculated for each
subject, as described in Section V-B4. Finally, we present the
mean (across subjects) for each metric.

2) Cumulative duration-based evaluation: In this evalua-
tion scheme, we compute the confusion matrices per data-file
in exactly the same manner as in Section V-B1. However, all
confusion matrices are then summed into one. This confusion
matrix partitions into TP , FP , TN and FN the entire
duration of the dataset (approximately 60 hours). The same
metrics as in Section V-B1 are calculated.

This evaluation differs from ‘LOSO duration-based evalua-
tion’ as it takes into account the duration of the recording for
each subject (i.e. subjects with longer recordings affect the
evaluation more).

3) Event-based evaluation: For event-based evaluation, we
initially process each data-file individually, and derive the
ground truth and evaluated detector partitionings as in Section
V-B1. Each positive ground truth interval is regarded as a
ground truth eating event, and each positive detected interval is
regarded as a detected eating event. Note that we do not allow
two consecutive intervals to be labelled with the same label
(both positive, or both negative). We then perform a matching
between detected and ground truth eating events that satisfies
the following criteria:

• Each detected eating event is matched with either 0 or 1
ground truth eating event.

Time (min)

0 2 4 6 8 10 12 14 16 18

Ground truth

Detected

g
1

g
2

d
1

d
2

Fig. 10: Example of event-based evaluation. Ground truth
event g1 is matched with detected event d1; g2 is not matched
to d2 as they do not overlap more than the required threshold.
Thus, CD = 1 (corresponding to pair g1 and d1), FD = 1
(corresponding to d2), and MD = 1 (corresponding to g2).

• Each ground truth eating event is matched with either 0
or 1 detected eating event.

• The overlap duration for each matched pair must be at
least 75% of the duration of the union of the matched
events.

Each matched pair contributes as one correct detection (CD).
Each non-matched detector event contributes as one false
detection (FD), and each non-matched ground truth event
contributes as one missed detection (MD). An example is
demonstrated in Figure 10.

As a result, total CD for the entire dataset are computed as
the sum of all CD across each of the 26 recordings. Total FD
and MD are also computed by summing the results across the
recordings.

4) Evaluation metrics: Given a confusion matrix, we com-
pute precision = TP

TP+FP , recall = TP
TP+FN , as well as

F1 measure = 2
TP

2 · TP + FP + FN
(8)

Weighted accuracy is also used as in [28], and computed as

weighted accuracy =
w · TP + TN

w(TP + FN) + FP + TN
(9)

where w is the positive class weight; setting w = 1 yields
accuracy (non-weighted). Authors of [28] use w = 20, based
on the hypothesis that in real life, eating vs non-eating activity
occurs at a 1 : 20 ratio in a 24-hour cycle. In our results, we
computed both non-weighted accuracy (w = 1, simply denoted
accuracy), as well as weighted accuracy (with w = 6.9, based
on our dataset’s prior probability of eating 7.6 : (60− 7.6)).

C. Experiments

Since each of the three algorithms requires the training of
an SVM model, we perform LOSO experiments to test their
effectiveness on the dataset. In particular, for each subject we
assemble all data-files of that subject as the test set. From
the remaining recordings (that belong to other subjects) we
randomly select an equal amount of positive and negative
feature vectors to assemble the development set. In particular,
we select 2000 positive and 2000 negative feature vectors for
audio, and 1000 positive and 1000 negative feature vectors
for PPG. The development set is then randomly split into a
training set (which contains 70% of the development set) and
a validation set (which contains the remaining 30%).

A grid search is then used to determine optimal values for
parameters C and γ of the SVM and RBF kernel using the
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Fig. 11: ROC curves for the threshold of the smoothed decision
score of SVM and Equation 7. Evaluation is based on duration.

development set. In particular, we search in C ∈ {10i, i =
−2,−1, 0, 1, 2} and γ ∈ {γi0, i = −2,−1, 0, 1}, where
γ0 = D−1 is the default libSVM value and D is the number
of features (D = 15 for audio and D = 10 for PPG). For
each point on the grid, a model is trained on the training
set and is evaluated on the validation set. The pair that leads
to the highest validation set accuracy is selected and a final
model is trained using the entire development set. Evaluation
is performed on the held-out test set (i.e. the “left-out” subject
data). This process is repeated for all subjects.

Receiver operator characteristic (ROC) curves are calculated
by varying the threshold values Appg, Aaudio and Afusion of the
smoothed SVM scores sppg and saudio, as well as the parameter
α of Equation 7. For the thresholds we select 500 equally
spaced values in the range of the decision scores, and for
parameter α we select values from 0 to 2 with a step of 0.25.
LOSO duration-based evaluation curves are shown in Figure
11. It is important to note that these thresholds and parameter
values are always the same across all subjects (no inter-subject
tuning).

In Table V we present evaluation results for each of the three
methods of Section V-B; in particular, we present those points
that yield the highest precision while maintaining recall over
0.8. Table Va shows results for duration-based evaluation; five
metrics are shown for each combination of sensors, as well
as the values of thresholds Appg|, Aaudio, Afusion (presented in
the same column, Asensor) and parameter α (for fusion only)
for which these results are obtained. Similar results are shown
in Table Vb for cumulative duration-based evaluation. Finally,
we present in Table Vc event-based results.

As a comparison, we present the effectiveness of 3 audio-
based algorithms presented in [13]: maximum sound energy al-
gorithm (MSEA), maximum energy slope algorithm (MESA),
and low-pass filtered signal algorithm (LPFSA) in Table VI.
Since these algorithms detect chews, we apply a simple aggre-
gation method first that computes chewing bouts by merging
the detected chews that are closer than 2 seconds and then
discards all bouts that are less than 5 seconds long. We then
use the same aggregation method to compute eating events as
in Section IV-A. All 3 algorithms require setting a parameter
value; we have selected such as value that yields recall slightly

TABLE V: Evaluation results for all three detection algo-
rithms, with and without the use of the accelerometer signal
(“+” denotes with acc.). Parameter selection is based on
maximising precision while maintaining a minimum recall of
0.8. Bold indicates highest value for each metric and lowest
for FD and MD.

(a) LOSO duration-based evaluation

sensor prec. rec. acc. w. acc. F1 Asensor α

PPG 0.341 0.814 0.753 0.767 0.448 0.206 -
PPG+ 0.436 0.805 0.814 0.800 0.522 0.206 -
Audio 0.633 0.809 0.880 0.861 0.650 0.220 -
Audio+ 0.687 0.811 0.912 0.879 0.693 0.175 -
Fusion 0.760 0.802 0.928 0.886 0.729 0.654 1.25
Fusion+ 0.794 0.807 0.938 0.892 0.761 0.509 1

(b) Cumulative duration-based evaluation

sensor prec. rec. acc. w. acc. F1 Asensor α

PPG 0.278 0.801 0.710 0.749 0.413 0.106 -
PPG+ 0.336 0.809 0.773 0.788 0.475 0.073 -
Audio 0.476 0.811 0.861 0.840 0.600 0.311 -
Audio+ 0.561 0.818 0.895 0.862 0.666 0.220 -
Fusion 0.641 0.805 0.918 0.870 0.714 0.618 1
Fusion+ 0.702 0.800 0.931 0.875 0.748 0.581 1

(c) Event-based evaluation; the high number of FDs is due to the requirement
that at least 80% of all snacks (CD +MD) is correctly detected (CD).

sensor No. of CDs No. of MDs No. of FDs Asensor α

PPG 70 16 202 0.306 -
PPG+ 69 17 153 0.239 -
Audio 72 14 89 0.356 -
Audio+ 71 15 63 0.356 -
Fusion 69 17 51 0.618 0.75
Fusion+ 69 17 33 0.618 0.75

TABLE VI: Cumulative duration-based evaluation for audio-
based algorithms of Päßler et al. [13].

prec. rec. acc. w. acc. F1

MSEA 0.288 0.804 0.720 0.756 0.424
MESA 0.304 0.813 0.738 0.770 0.443
LPFSA 0.289 0.811 0.720 0.759 0.426

higher than 0.8 for comparison with our algorithms.

VI. DISCUSSION

Based on the results of the previous Section, PPG signifi-
cantly under-performs compared to audio. Precision is 0.341
for LOSO and 0.278 for cumulative duration-based evaluation.
These values are much lower compared to the ones reported in
[20]. However this is expected as the dateset used in this work
is much more challenging compared to the one of [20], where
subjects were always seated on a table, alternating between
talking, coughing, eating, drinking, and silence. Furthermore,
PPG-based detection relies on the chewing-related signal being
recorded with significantly higher energy compared to other
signals of similar frequency content, such as heart rate; this in
turn requires that the photo-diode is directly facing the LED.
In our dataset this was not always the case, either because the
subject did not properly position the sensor at his/her ear, or
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due to inappropriate sensor size for the subject’s ear anatomy
(only one sensor size was used in the experiments). A solution
to this problem would be to explore alternative housings for
the PPG sensor; however, in this work we wish to combine
the PPG sensor with an in-ear microphone and we therefore
chose to embed the sensor in an ear hook.

For audio-based detection, on the other hand, precision
is almost double for LOSO duration-based evaluation, 0.633
compared to 0.341 of PPG. Precision of our algorithm for
cumulative evaluation is 0.476 which is also higher than the
precision of the MSEA, MESA, and LPFSA algorithms of
[13]. As presented in Table VI, these 3 algorithms achieve
precision of approximately 0.29; this is a clear indicator of
the challenge of our dataset.

Even though audio-based detection clearly outperforms
PPG-based detection, fusion of both detection signals further
increases the detection accuracy. In particular, LOSO duration-
based evaluation for fusion yields precision of 0.76; this is
more than 12 percentage points higher than audio, or 20%
higher. Student’s t-test for the null-hypothesis (that fusion does
not improve over audio) yields p < 0.02 for all metrics against
both PPG and audio based detections. In Table VII we present
p-values for all metrics (given the 0.8 recall requirement) for
9 cases. Furthermore, the values of parameter α for which
this effectiveness is achieved is either 1 or close to 1 (1.25 or
0.75) indicating a balanced contribution of both modalities in
the detection.

Introducing the accelerometer signal to each detection
method improves the results; precision increases 9, 5 and 3
percentage points for PPG, audio, and fusion-based detection
respectively. Student’s t-test about the improvement introduced
by the accelerometer is by chance yields p = 5 · 10−7
for precision and p = 10−5 for F1 score regarding PPG,
and for the null-hypothesis that Audio+ does not improve
over Audio p = 0.02 and p = 0.1 for the same metrics.
Introducing the accelerometer for the fusion-based detection
does not improve results significantly, since for most subjects
effectiveness remains approximately the same. However, it
increases for some few subjects, and which explains the
higher values for Fusion+ in Table V. Furthermore, given the
requirement for at least 80% CD, all 6 detection methods
achieve approximately 70 CD and 16 MD (see Table Vc);
however, fusion-based detection (and especially fusion-based
combined with accelerometer) greatly decreases the number
of FD, yielding only 33 FD for the best case.

In addition, as described in Section IV-B, a sampling
frequency of as low as 2 kHz is sufficient to detect chewing
activity (also shown in our earlier work in [4]). This allows
us to overcome obstacles in real-world deployment of the
chewing detection system as a wearable system; an audio
signal of 2 kHz can be easily transmitted via Bluetooth to
a mobile phone, and the required calculations can be easily
carried out on modern mobile phones without significantly
affecting battery consumption or CPU load. Tests with a
preliminary prototype implementation of the entire streaming
pipeline on Android devices (manufactured by Samsung, LG,
Motorolla and HTC) do not indicate a significant impact on
battery consumption or CPU load.

TABLE VII: Student’s t-tests (p-values) for null-hypothesis
that algorithm A produces the same results as algorithm B
when comparing “A vs. B”. Bold values indicate the cases
where the null-hypothesis was not rejected based on the 0.05
probability threshold.

p-value
t-test prec. acc. w. acc. F1

PPG+ vs. PPG 0.0000 0.0004 0.0001 0.0000
Audio+ vs. Audio 0.0214 0.1083 0.2729 0.0132
Fusion+ vs. Fusion 0.4058 0.8600 0.4276 0.4494
Audio vs. PPG 0.0130 0.0044 0.0015 0.0018
Fusion vs. PPG 0.0000 0.0015 0.0000 0.0000
Fusion vs. Audio 0.0047 0.0147 0.0008 0.0013
Audio+ vs. PPG+ 0.0391 0.0217 0.0394 0.0092
Fusion+ vs. PPG+ 0.0007 0.0093 0.0016 0.0002
Fusion+ vs. Audio+ 0.0107 0.1778 0.0493 0.0261

VII. CONCLUSIONS

We have presented a novel chewing detection system relying
on audio, PPG and accelerometry to identify eating events. The
proposed system integrates a microphone and a PPG sensor
in an ear hook, connected via wire to a datalogger equipped
with an accelerometer. Validation on an experimental, yet
challenging real-life-like dataset, shows that the combination
of signals from all sensors yields better results compared
to results from either audio or PPG alone. For duration-
based evaluation, accuracy reached 0.938 (weighted accuracy
is 0.892), while for evaluation based on eating events, it
reached precision 0.794 and recall 0.807 (with F1 score of
0.761). These results are particularly encouraging, given the
challenging nature of the evaluation dataset.

The system’s effectiveness, low sampling rate and low
computational requirements indicate potential for use in di-
etary monitoring applications. However there is still a lot
of room for improvement, both in research and in technical
work. Real-time integration with mobile devices is a necessary
first step, and we are currently working on integrating a
Bluetooth transmitter to the data logger. Furthermore, user
comfort is an important factor affecting the usability of the
system and future study includes the exploration of alternative
sensor housing designs. Finally, there are also limitations that
should be taken into account; the integrated audio and PPG
system does not detect individual chews, but rather chewing
bouts. In addition, it does not detect drinking and future work
includes studying the potential of in-ear microphone sounds
for drinking detection.
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