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ABSTRACT

In & varicty of problems a random process is observed
at different resolutions while knowledge of the corre-
sponding scale conversion ratio usually contains use-
ful information related to problem-specific quantities.
A method is proposed which exploits cumulant do-
main relations of such signals in order to yield frac-
tional estimates of the unknown conversion ratio. The
noise insensitivity and shift invariance property of the
cumnulants offers advantages to the proposed method
over signal domain alternatives. These advantages
arc discussed in two classes of practical problems in-
volving 1-D and 2-D scale converted signals.

1. INTRODUCTION

Fractional sampling rate (or scale) conversion of D-
dimecunsional processes arises in a variety of signal pro-
cessing contexts involving signals observed at two dif-
ferent resolutions. The conversion of a signal from an
original resolution to a lower one may be due cither to
the digital signal processing method employed (c.g.,
deliberate downsampling) or to the sampling mech-
anism employed for A/D conversion. As fractional
numbers are dense in real numbers, fractional reso-
lution conversion ratios can approximate arbitrarily
close any resolution ratio. Rate conversion problems
arise, for example, in pattern recognition or classi-
fication applications where one has to compare in-
coming signals, acquired at a given (test) resolution,
to pre-stored data, acquired at a different (usually
higher) reference resolution. The ratio of these two
scales may be unknown. The processing required can
be carried out in the signal domain itself; feature ex-
traction or statistics estimation is normally employed,
however, in order to move to a domain where com-
parisons arc possible and they can be performed at
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reduced computational cost.

Third order cumulants are examined as a candi-
date domain in the present work, as a special case
of the more general k-th order cumulant domain, ad-
dressed in [5]. Motivation for this provide the cstab-
lished noise robustness and phase information reten-
sion properties of the third order cumulant, rendering
it an attractive candidate either for feature sclection
or for statistics estimation. See, c.g., [1] and [8] for
definitions, properties and applications of third order
cumulants and bispectra. Specifically in this paper
relations are established between the third order cu-
mulants (and bispectra) of the signal at the high and
the low resolution. These relations can be used cither
to estimate the third order curnulants of the low res-
olution signal directly from the cumulants of the high
resolution signal or to estimate the ratio of the two
resolutions (scales), when unknown.

The obtained relations are used in two representa-
tive applications involving sampling rate conversions
of 1-D and 2-D stochastic signals respectively.

The first application estimates the velocity of a
moving source by exploiting the Doppler effect. The
moving object, whose velocity is sought, may cither
reflect an 1-D narrowband signal (c.g., a tone) trans-
mitted by the detector, or independently emit a gen-
erally wideband signal. The signal received at the
detector site is a fractionally converted version of the
original signal, and the fractional conversion ratio is
related to the velocity of the target. Therefore, the
target velocity can be obtained via estimation of the
scale ratio between the original and the received ver-
sions of the signal. Traditional methods rely on the
assumption that the measured signals are strictly of
narrowband nature (tones). Our approach focuses on
the alternative assumption of stochastic signals, pos-
sibly measured in low signal to noise ratio conditions.
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In the second application, the distance from a tex-
tured surfacc is computed by comparing the resolu-
tion of a captured image to that of a reference image.
A typical example of such problems is the estimation
of the flight altitude of a plane from landscape images
taken during flight. Resolution conversion in this case
involves two 2 x 2 integer, non-singular decimation
and expansion matrices.

2. THIRD ORDER STATISTICS
RELATIONS

Let y(n) denote a rate-converted, discrete variable,
D-dimensional process obtained from the original pro-
cess z(n) after fractional rate conversion:

y(n) =3 W(Mpxpn— Lpxpk) z(k), (1)
k

where the rate conversion is obtained through a
“downsample by matrix Lpxp - filter by h(n) - ex-
pand by matrix Mpx p” operation and Lpxp, Mpxp
arc D x D integer, non-singular, commutative and co-
prime matrices, [2]. Of practical intercst are the cases
with det(Mpxp)>det(Lpyp), meaning that y(n) is
observed at a resolution lower than the original (ref-
erence) resolution of z(n).

Equation (1) covers the general case where re-
sampling is possibly accompanied by rotation and
azimuth changes (see [9], chap. 12). In [5] input -
output cumulant expressions are established for the
general case of equation (1) with full integer matri-
ces Lpxp,Mpxp. For the purposes of the present
work, we restrict ourselves to the special case of diag-
onal matrices Lpxp = Lipxp, Mpxp = MIpxp,
where L, M are coprime integers. This corresponds
to rescaling by the scalar factor M/ L alone, thus pre-
serving the view point from which the signal is ob-
served. This choice is made in order to simplify the
mathematical notations, since here the focus is on
the use of these relations for the estimation of the re-
sampling ratio in the aforementioned applications. It
is straightforward to rewrite the obtaincd relations,
however, for the general case of general diagonal or
full matrices Lpxp, MpxD-

Equation (1) is cquivalent to a resampling of the
continuous signal z.(t) from which z(n) was origi-
nally obtained through sampling, provided that the
filter A{(n) employed has an ideal lowpass transfer
function H(w) with gain L and cutoff frequencies
7w /M over all dimensions d=1,...,D.

The third order cyclic cumulant of y(n), defined

as ([5]) '
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where ¢3 y(my, my; n) is periodic in (n) with period
[0..L —~ 1]P, is related to cs,(mi,m,) through the
following equation:

_ 1
E3,y (11, m3) 15 DN csalsi,s)

S Sz

X h3(]\/fml - LS:(, ]\/Imz - LSz)Qg)

where hs{mj, mz)é >on An) A(n+my) h(n+m;) is
the triple correlation of the decimation D-dimensional
filter A{n). See [3], [6] for definitions and properties
of cyclic moments and cumulants.

Equation (3) can be transformed to the frequency
domain, to yield relations between the cyclic bispec-
trum of the low resolution signals and the bispectrum
of the reference resolution signals, by exploiting the
coprimeness of L, M:
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The RHS of equation (4) is a summation of fre-
quency shifted replicas of Cs4(w1,ws), each replica
shrinked by the scaling factor M/L. It is interesting
to notice the resemblance that equation (4) bears to
the corresponding input - output relation between the
Fourier transforms of deterministic signals.

3. ESTIMATION OF THE RESOLUTION
CONVERSION RATIO

The input - output relations given in the previous
section allow for the computation of the resolution
conversion ratio, L/M, provided that both z(n) and
y(n) are available and the blurring mechanism A(n)
is known. The method proposed in the sequel for the
computation of L/M relies on matching the cumu-

lants of the measured signal y(n) to successive resolution-

converted versions of the cumulants of the original
signal z(n). Although computationally demanding,
this method is shown to converge to the true resolu-
tion conversion ratio.
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Bcfore proceeding to the description of the pro-
poscd method, it should be cmphasized that address-
ing this problem in the third order statistics rather
than the signal domain offers two advantages.

1. Statistical similarity is cxploited, which means
that valid results are obtained even if y(n) and
x(n) correspond to different realizations of a
stochastic process. This feature is of great im-
portance in situations where the reference (high
resolution) and the test (low resolution) signals
arc not acquired simultancously. This is the
case, ¢.g., with pattern classification applica-
tions that usc pre-stored data.

2. The well known immunity of the third order
statistics to a wide class of additive noises, makes
the proposed method appropriate for situations
where only noisy data is available.

Proposed Method :

step 1 : Estimate the cumulant of the reference sig-
nal z(n), é,(m;,my), and the cyclic cumu-
lant of the test signal y(n), &, (my, my). The
agymptotically consistent estimator of the cyclic
cumulant proposed in [3] can be employed. This
estimator in the present set up takes the form

yy(mamy) = - y(E)y(tbm)y ),
YteW,
(%)

where W, is the set of all available data samples
of signal y(n), and T, is the cardinal number
of W,. Note that in practice the conventional
estimator &3, (mi, my) for the (non-cyclic) cu-
mulant of z(n) is implemented in the same way.

step 2 : Define a partition {gn},n = 1,2,...,N of
the scale (resolution) interval (0, 1] with g,, cho-
sen as fractional numbers L, /M, where L, <
M, and (L, M,,) arc coprime integers.

step 3 : Forn=1,2,...,N,

1. Compute the triple correlation hgn) (my, my)

of the resampling filter h(n)™ | which should

have gain L,, and cutoff frequency = /M,

2. Estimate the cyclic camulant EEZ) (my, ms)
of 4™ (n), which is a resampled version
of the reference signal x(n) at a sampling
rate M,/ L, times lower than that of z(n).

This estimator can be implemented as in
cquation (3), using L, M, hgn) in place of
L, M, hs.

3. Compute the similarity index

L, s
My,

f

i, Ms

(6)

step 4 : Obtain an estimate of the conversion ra-
tion L/M as the point ¢, = L,/M, of the
global minimum of index f(g,) over all n =
1,2,...,N. The estimate of the conversion ra-
tion L/M can be drown arbitrarily close to the
true ratio L/M by repeatedly refining the par-
tition gy, of (0,1]. Local refinement can be used,
in a process of zooming into the neighborhood
of the initial the global minimum.

Comment:

The similarity index f(g,) is in general a non-
convex function of ¢,,. However, it has been observed
that f(g,) exhibits a deep global minimum at L/M.
Also in the neighborhood of the global minimum it
assumes a convex form. Therefore, in the ncighbor-
hood of the global minimum the refinement process
can be driven by fast minimization algorithms such
as the Fibonacci and Golden Section methods, ([7]).

4. APPLICATIONS

Use of the proposed method for the estimation of the
unknown sampling rate conversion ratio L/M is in-
vestigated in the sequel, in an 1-D and a 2-D problem.

4.1. Velocity estimation via Doppler effect

A signal z(t) reflected by an object moving with ve-
locity v is observed at the source (detector) site as
y(t) = z(at), where a = &2 and c is the velocity
of transmitted signal. This corresponds to a rescal-
ing of the transmitted signal z(t) by a factor @. A
similar relation with a = % holds in the casc that
the moving object itself is emitting the signal z(n),
rather than reflecting it.

Conventional methods assume that z(t) is a nar-
rowband signal, usually a sinusoid, and measure the
frequency shift between the transmitted and the re-
ceived signals as a means to compute « and then .
This narrowband assumption is not always met, ei-
ther because of physical constraints of the cmitters,
or when transmission of simusoidal signals is to be
avoided for security rcasons.
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In such cases the method proposed here can be
used, approximating ¢ arbitrarily close by a fraction
M/L. The proposed method offers the advantages of
(1) being immune to a class of additive noises, as a
result of its third order cumulant basis, and (i) al-
lowing the widespreading of the frequency contents of
the transmitted signal, necessary under certain appli-
cations.

4.2. Relative distances from textured images

Pictures of a textured surface, acquired from vary-
ing distances, represent versions of the surface un-
der different space scalings. The scale ratio between
two such pictures (a reference and a test one) can be
used to obtain the distance of the camera from the
surface, for the test picture. This problem arises in
various image processing tasks, as for cxample: (i)
when landscape images arc taken from different al-
titudes, which arc unknown at the processing time,
(i) in motion information cxtraction from video se-
quences depicting objects that move towards/off the
camera, (i) in medical imaging application where
tissue images are processed, etc.

_ If I(t) is the analog image and «(t) the analog
form of I{t) observed from distance dg, then z(t) =
I (dTEt), where f is the focal distance of the camera.
Assurmning that the test picture y(t) is taken from an
unknown distance dy, then y(t) = I(—df—yt) = Ilﬁ(g—z-t).
The proposed method can be used to approximate ar-
bitrarily closc the ratio dy/d, by a fractional number.
Therefore, if d, is known, dy can be computed.

Comments:

Scale registration methods applied dircctly to the
image rather than to the cumulant domain can be
also used along the lines of the proposed method. The
advantages of using curnulant statistics, though, are:

1. The fact that statistical similarity is exploited
allows to obtain valid distance estimates even
when the test and the reference images do not
depict the same surface, provided that they cor-
respond to images posscssing similar statistical
structure.

2. The shift invariance of the cumulant domain al-
lows for the comparison of images that are not
necessarily aligned in space.

Possible generalization of the algorithm to address
problems involving general diagonal or non-diagonal
decimation snd interpolation matrices L, M will make

the comparisons insensitive to azimuth / rotation changes.

5. CONCLUSIONS

A cumulant based method for the estimation of frac-
tional scale conversion ratio of signals is proposed in
the present work. Expressions relating the higher-
order statistics of signals observed at two different
resolutions (scales) are quoted and used in a prac-
tical algorithm for scale conversion ratio estimation.
Application of the proposed algorithm in problems
involving 1-D and 2-D signals are outlined, and rela-
tive merits of the proposed approach due to the use
of higher order statistics are discussed.
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