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Abstract— Certain patterns of eating behaviour during meal
have been identified as risk factors for long-term abnormal
eating development in healthy individuals and, eventually, can
affect the body weight. To detect early signs of problematic
eating behaviour, this paper proposes a novel method for
building behaviour assessment models. The goal of the models
is to predict whether the in-meal eating behaviour resembles
patterns associated with obesity, eating disorders, or low-risk
behaviours. The models are trained using meals recorded with
a plate scale from a reference population and labels annotated
by a domain expert. In addition, the domain expert assigned
scores that characterise the degree of any exhibited abnormal
patterns. To improve model effectiveness, we use the domain
expert’s scores to create training error regularisation weights
that alter the importance of each training instance for its class
during model training. The behaviour assessment models are
based on the SVM algorithm and the fuzzy SVM algorithm
for their instance-weighted variation. Experiments conducted
on meals recorded from 120 individuals show that: (a) the
proposed approach can produce effective models for eating
behaviour classification (for individuals), or for ranking (for
populations); and (b) the instance-weighted fuzzy SVM models
achieve significant performance improvements, compared to the
non-weighted, standard SVM models.

I. INTRODUCTION

Obesity (OB) and eating disorders (ED) are preventable,
noncommunicable diseases that affect a large percentage
of the global population. The World Health Organisation
estimates that over 1.9 billion adults and 380 million children
were overweight or obese in 2016 and emphasises the need
for prevention at individual and population level [1].

In addition to daily energy intake and physical activity,
the in-meal eating behaviour has proven to be associated
with OB and ED patients [2], [3]. For example, studies
have shown that both OB and ED populations demonstrate
patterns of linear eating behaviour during meals [4], while
similar behaviours have been associated with increased risk
of long-term abnormal eating development in healthy indi-
viduals [5].

To this end, the SPLENDID system [6] aims to automat-
ically identify early signs of problematic eating behaviour
that resemble known OB or ED behaviour patterns. First,
the meals are recorded using the Mandometer® device [2],
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which is a plate scale that provides continuous recordings
of the food weight during the meal. Then, signal processing
algorithms process the recordings to produce behaviour indi-
cators characterising in-meal behaviour [7]. The goal is to use
these indicators as input to the behaviour assessment models
that automatically identify any abnormal eating patterns.

These behaviour assessment models aim to assist the
health professionals’ decisions in two use cases: (a) for
personal guidance of an individual, by predicting if the
individual’s recorded meals resemble OB or ED patterns;
and (b) for population screening, by ranking the participating
individuals according to the degree they exhibit any abnormal
patterns.

In our previous work [8], we showed that unsupervised
behaviour assessment models, based on the one-class SVM
algorithm, were able to achieve good accuracy and ranking
performance for the binary problem of distinguishing be-
tween low-risk (LR) and abnormal meal behaviours (either
OB or ED). However, these models cannot specify if the
abnormal behaviours are of the OB or ED class. Furthermore,
the unsupervised models cannot exploit the importance of the
training patterns for their class, which was provided by the
domain expert.

In this work, we present supervised learning methods for
building behaviour assessment models that overcome the
above limitations. These models provide multiclass predic-
tions, able to distinguish between OB, ED and LR class.
In addition, we use the fuzzy SVM algorithm [9] that
features an importance weighting mechanism for the training
instances. Using instance weights, we are able to incorporate
the domain expert’s knowledge for the importance of separate
training instances, during model training.

The experiments were conducted on 120 individuals from
4 populations with different characteristics, such as age and
gender. The experimental results show that: the proposed
behaviour assessment models achieve good multiclass clas-
sification and ranking performance; and the exploitation of
the instance-weighting mechanism of fuzzy SVM algorithm
can lead to significant performance improvements, compared
to the non-weighted, standard SVM algorithm.

II. PROPOSED APPROACH
A. Training set generation

Recorded meals from a reference population of N healthy,
normal-BMI individuals with specific age and gender char-
acteristics are used to generate the training set. A meal
from each participating individual was measured using the
Mandometer® plate scale.



First, the recordings of each meal were automatically pro-
cessed in order to find the food intake curve (i.e., weight of
food consumed at each time during meal) and extract eating-
related behaviour indicators, using the algorithms described
in [7]. The feature vector x; of a meal consists of 4 behaviour
indicators: “Food intake deceleration”, “Initial food intake
rate”, “Total food intake” and “Average food intake rate”.
Details regarding the eating-related indicators and the feature
selection procedure are given in [8].

Then, a domain expert inspected the food intake curves
and the extracted indicators to provide subjective scores
based on his experience with OB and ED patients. The
scores were given on an integer scale from —4 to +4 and
quantify whether the meal patterns of the healthy individuals
resemble pathological behaviours. More negative scores are
given to meals with the higher resemblance to ED patients’
behaviour; more positive scores are given to meals with
higher resemblance to OB patients’ behaviour; and 0 scores
are given to behaviours that resemble low risk patterns.

Based on the expert scores, we assigned labels to the
reference population’s meals: y; = ED for the scores in
[—4, —1]; y; = OB for the scores in [+1, +4]; and y; = LR,
indicating low risk, for the 0 scores. Note that these labels
do not categorise the current health status of the individuals
in the reference population (since all of them are healthy),
but they denote similarity with known pathological eating
behaviours.

In addition to the labels, we assigned fuzzy membership
values s; for each meal. A membership value s; quantifies
the importance of meal x; is for its class y;. To this end,
we set the values of s; as the absolute value of the expert
scores when y; is either ED or OB class; thus, s; € [1,4].
For the meals of LR class we set s; = 1, since we do not
have additional knowledge regarding their class importance.

Overall, the output of the described procedure is a training
set {(x;,v;,8:)]t =1,..., N}, which we used for training
the behaviour assessment models, described next.

B. Behaviour assessment model training

We train the behaviour assessment models using the SVM
algorithm [10] and an instance-weighted variation, the fuzzy
SVM algorithm [9]. Next, we describe the algorithms and
their adaptation for behaviour assessment model training.

SVM is a binary classification algorithm, in which a
realisation of the separating hyperplane for non-separable
classes is given by the following optimisation problem:
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where NT and N~ are the number of instances for the
positive and negative class.

Due to class imbalance in our problem, we use regulari-
sation weights C* and C'~ per class in objective function

TABLE I
DATASETS USED FOR MODEL TRAINING AND EVALUATION

Dataset  Description M/F LR/ED/OB

DTI1 44 meals from normal-BMI 0/44 25/7/12
healthy adult females (age
average: 22.84).

DT2 25 meals from adult males and  13/12 10/1/14
females (age average: 30.01).

DT3 40 meals from Swedish adoles- 18/22 15/11/14
cent males and females collected
at a high school screening (age
average: 16.67). Details in [14].

DT4 11 meals from adult females (age  0/11 5/274

average: 22.8).

(eq. 1). The C*,C~ are training hyperparameters that reg-
ularise the effect of the training errors &; for each class.
Larger values for C*,C~ lead to less training errors, but
the separating margin between classes becomes narrower.
Proper selection of the C, C~ values is typically performed
through hyperparameter selection methods, such as K-fold
cross-validation.

We train 3 pairwise binary models (i.e., ED vs OB,
OB vs LR, and LR vs ED) and we construct the final
behaviour assessment model using an one-vs-one (OVO)
voting scheme. In our problem, the C*, C~ of each pairwise
classifier correspond to 2 out of 3 parameters from: Cgp,
Cog, Cir. Finally, in order to produce rankings between
new meals for ED or OB class, we use Platt scaling [11] to
calculate the class probabilities and rank according to them.

In the standard SVM algorithm, all instances are consid-
ered of equal importance; however, this is not optimal for
all problems. To this end, the fuzzy SVM algorithm takes
advantage of the membership values, s;, and uses them as
weights that regularise each instance’s contribution to the
overall training error. In fuzzy SVM, the objective function
becomes
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whereas the constraints (2), (3) remain the same.

In (4), a larger s; value makes the instance x; less likely to
be misclassified; i.e., it becomes more likely for the training
error &; to be zero. Thus, the fuzzy SVM algorithm, when
applied with s; values that are larger for the more prominent
training instances, can achieve a separating hyperplane with
better generalisation performance than standard SVM [9].

Fuzzy SVM algorithm has been adopted by many decision
support systems for biomedical applications with training
instances of different importance for their class. For example,
fuzzy SVM has been used for diagnosis of neuromuscular
disorders [12], and for pathological brain detection [13].

In our application, larger s, values are given to training
instances with higher resemblance to pathological OB and
ED patterns, which are the instances that are more important
and representative for their classes.



TABLE 11
CONFUSION MATRICES FOR THE SVM BEHAVIOUR ASSESSMENT MODEL

Predicted label

| LR ED OB | LR ED OB | LR ED OB
E LR 8 2 0 LR 13 2 LR 5 0 0
= ED 0 0 1 ED 3 5 ED 0 2 0
Tg OB 7 0 7 OB | 4 10 OB | 2 0 2
& (2) DT2 (Accuracy = 60%) (b) DT3 (Accuracy = 65%) (c) DT4 (Accuracy = 82%)

TABLE III
CONFUSION MATRICES FOR THE FUZZY SVM BEHAVIOUR ASSESSMENT MODEL
Predicted label

| LR ED OB | LR ED OB | LR ED OB
E LR 9 1 0 LR 13 2 LR 5 0 0
S ED 0 1 0 ED 3 5 ED 0 2 0
T:‘ OB 5 0 9 OB 4 10 OB 1 0 3
& (a) DT2 (Accuracy = 76%) (b) DT3 (Accuracy = 65%) (c) DT4 (Accuracy = 91%)

III. EXPERIMENTAL ANALYSIS
A. Datasets and Experimental Setup

The datasets used in the experimental analysis consist of
meals from 120 individuals, collected from 4 populations
with different characteristics. Each individual contributed
with one meal in the datasets. The meals were annotated by
a domain expert and were assigned classes and scores, using
the procedure described in Section II-A. Table I describes for
each dataset: the population demographics, the male/female
(M/F) ratio, the age average, and the number of meals
annotated as LR, ED or OB by the domain expert.

We use DT1 as the training set and the DT2, DT3, and
DT4 as evaluation sets. It is worth noting that, the population
characteristics of DT1 match exactly only the characteristics
of population DT4 (young adult females, with same age
average); they are partly similar with the characteristics
of population DT2 (young adult males and females, with
slightly higher age average); and are fairly dissimilar with
the characteristics of population DT3 (adolescent males and
females).

Ideally, we would like to train behaviour assessment mod-
els using reference populations with similar characteristics
with the populations on which we apply them. Nevertheless,
it is not feasible to collect data for every type of population.
Thus, it is interesting to examine the robustness of the
behaviour assessment models when applied on different
population types.

TABLE IV
COMPARISON OF RANKING USING AVERAGE PRECISION METRIC

OB class ED class
Dataset SVM  Fuzzy SVM SVM  Fuzzy SVM
DT2 0.93 0.96 0.33 0.33
DT3 0.58 0.77 0.84 0.73
DT4 1.00 1.00 1.00 1.00

We train non-linear SVM and fuzzy SVM models with
the RBF kernel. Each feature is independently rescaled in
the [0, 1] range before training. The optimal hyperparameters
values for each algorithm are selected through a parameter
selection procedure on a grid of their combinations. The Cgp,
Cog, Cir receive values in {10°)i = —1,...,4}, and the v
of RBF kernel receives values in {10%i = —2,... 2}. We
assess the performance of each hyperparameter combination
through 20 randomised repetitions of 10-fold cross-validation
procedures on the training set (DT1).

B. Results

Tables II and III show the confusion matrices and the clas-
sification accuracy for each evaluation dataset, for the SVM
and fuzzy SVM behaviour assessment models respectively.
The more important result is that the proposed fuzzy SVM
approach improves the classification performance compared
to standard SVM approach. The accuracy improvement was
+27% for DT2, +11% for DT4, and there was no difference
for DT3.

The best classification performance of the fuzzy SVM
models was observed for DT4 (91%). This can be explained
by the fact that DT4 was recorded from a population with
same characteristics as training set, DT1. On the other
hand, the lowest classification performance was observed
for DT3 (65%) which was recorded from a completely
different population type. Similar performance differences
between the datasets were observed in our previous work
using unsupervised binary models [8].

Regarding the other classification metrics, we observe
the following improvements for the fuzzy SVM approach.
For DT2, the sensitivity improved: from 0.8 to 0.9 for LR
(+13%), from 0.0 to 1.0 for ED, and from 0.5 to 0.64 for
OB (+28%). The precision improved: from 0.53 to 0.64 for
LR (+21%), from 0.0 to 0.5 for ED, and from 0.88 to 1.0
for OB (+14%). For DT4, the sensitivity improved from 0.5
to 0.75 for OB (+50%) and the precision improved from
0.71 to 0.83 for LR (+17%).
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Fig. 1. The separating hyperplane of the pairwise LR vs ED classifiers,
projected on two indicators. The radius of the circle markers in the bottom
figure are proportional to the membership values, s;, used for fuzzy SVM
training. We observe that the existence of important ED instances near
the separating hyperplane allows the fuzzy SVM model to form a stricter
boundary between the two classes.

In addition, we calculated the Average Precision (AP)
metric to evaluate the ranking performance of the models
between each population’s meals. Table IV shows the AP of
the models for the OB and ED classes, for each evaluation
dataset. We observe that the fuzzy SVM model achieved for
OB class performance improvement of +3% in DT2 and
+33% in DT3. For ED class, there was a performance de-
crease of —13% in DT3 — this was the only metric the fuzzy
SVM approach was inferior to the standard SVM approach.
Finally, it is worth noting that both models achieved perfect
ranking for both classes on DT4, due to the same population
characteristics with the training set DT1.

We can comprehend how the membership values, s;,
affect the decision hyperplane through visualisations. Figure
1 compares the hyperplane projections of the pairwise binary
classifiers between the LR and ED classes, for the SVM
and fuzzy SVM. Figure 1b uses circle markers around
the instances of ED class, with radius proportional to the
membership values s;. (Markers are not used for LR in-
stances, since it is s; = 1,Vi such that y; = LR.) In the

example, we can see that prominent ED instances (i.e., with
larger s;) are located near the boundary between the two
classes. Such instances guide the fuzzy SVM algorithm to
produce a stricter separating hyperplane than standard SVM
in important regions of feature space.

IV. CONCLUSIONS

We introduced novel approaches for building behaviour
assessment models for the eating behaviour domain. The
behaviour assessment models are used for classification and
ranking of recorded meals according to characteristics that
resemble obesity and eating disorders patterns. The more
important element of the proposed approaches is the exploita-
tion of domain expert’s scores which characterise the degree
of abnormal eating behaviour for each training instance.
Using these scores, we produced training error regularisa-
tion weights for the fuzzy SVM algorithm. Experiments on
120 individuals’ meals from 4 populations showed that the
instance-weighted fuzzy SVM approach achieved improved
multiclass classification and ranking performance compared
to the non-weighted, standard SVM approach.

REFERENCES

[1] World Health Organisation, “Obesity and overweight, fact
sheet,” 2016,  https://www.who.int/news-room/fact-sheets/detail/
obesity-and-overweight, Last accessed on 2019-01-04.

[2] A. L. Ford et al., “Treatment of childhood obesity by retraining eating
behaviour: randomised controlled trial,” BMJ, vol. 340, 2010.

[3] M. Zandian et al., “Cause and treatment of anorexia nervosa,” Phys-
iology & Behavior, vol. 92, no. 1, pp. 283 — 290, 2007, Karolinska
Institutet - Neuroscience.

[4] 1. Ioakimidis et al., “A method for the control of eating rate: A po-
tential intervention in eating disorders,” Behavior Research Methods,
vol. 41, no. 3, pp. 755-760, 2009.

[5] ——, “Food intake and chewing in women,” Neurocomputing, vol. 84,
pp. 31 — 38, 2012, from Neuron to Behaviour: Evidence from
Behavioral Measurements.

[6] C. Maramis et al., “Preventing obesity and eating disorders through
behavioural modifications: The SPLENDID vision,” in Proceedings of
the 4th International Conference on Wireless Mobile Communication
and Healthcare - Transforming Healthcare Through Innovations in
Mobile and Wireless Technologies, Nov 2014, pp. 7-10.

[7]1 V. Papapanagiotou et al., “A parametric probabilistic context-free
grammar for food intake analysis based on continuous meal weight
measurements,” in Proceedings of the 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Aug 2015, pp. 7853-7856.

[8] C. Diou et al., “Data-driven assessments for sensor measurements of
eating behavior,” in Proceedings of the 2017 IEEE EMBS International
Conference on Biomedical Health Informatics (BHI), Feb 2017, pp.
129-132.

[9] C.-F. Lin and S.-D. Wang, “Fuzzy support vector machines,” IEEE
Transactions on Neural Networks, vol. 13, no. 2, pp. 464-471, 2002.

[10] C. Burges, “A tutorial on support vector machines for pattern recog-
nition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp.
121-167, 1998.

[11] J. Platt et al., “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Advances in large
margin classifiers, vol. 10, no. 3, pp. 61-74, 1999.

[12] A. Subasi, “Medical decision support system for diagnosis of neuro-
muscular disorders using DWT and fuzzy support vector machines,”
Computers in Biology and Medicine, vol. 42, no. 8, pp. 806 — 815,
2012.

[13] Y.-D. Zhang et al., “Pathological brain detection in MRI scanning
by wavelet packet tsallis entropy and fuzzy support vector machine,”
SpringerPlus, vol. 4, no. 1, p. 716, Nov 2015.

[14] B. Langlet et al., “Objective measures of eating behaviour in a swedish
high school,” Behaviour & Information Technology, vol. 36, no. 10,
pp. 1005-1013, 2017.



